skip to main content

Title: HYDRODYNAMIC SIMULATIONS OF H ENTRAINMENT AT THE TOP OF He-SHELL FLASH CONVECTION

We present the first three-dimensional, fully compressible gas-dynamics simulations in 4π geometry of He-shell flash convection with proton-rich fuel entrainment at the upper boundary. This work is motivated by the insufficiently understood observed consequences of the H-ingestion flash in post-asymptotic giant branch (post-AGB) stars (Sakurai's object) and metal-poor AGB stars. Our investigation is focused on the entrainment process at the top convection boundary and on the subsequent advection of H-rich material into deeper layers, and we therefore ignore the burning of the proton-rich fuel in this study. We find that for our deep convection zone, coherent convective motions of near global scale appear to dominate the flow. At the top boundary convective shear flows are stable against Kelvin-Helmholtz instabilities. However, such shear instabilities are induced by the boundary-layer separation in large-scale, opposing flows. This links the global nature of thick shell convection with the entrainment process. We establish the quantitative dependence of the entrainment rate on grid resolution. With our numerical technique, simulations with 1024{sup 3} cells or more are required to reach a numerical fidelity appropriate for this problem. However, only the result from the 1536{sup 3} simulation provides a clear indication that we approach convergence with regard tomore » the entrainment rate. Our results demonstrate that our method, which is described in detail, can provide quantitative results related to entrainment and convective boundary mixing in deep stellar interior environments with very stiff convective boundaries. For the representative case we study in detail, we find an entrainment rate of 4.38 ± 1.48 × 10{sup –13} M {sub ☉} s{sup –1}.« less
Authors:
;  [1] ;  [2]
  1. LCSE and Department of Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)
  2. Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P5C2 (Canada)
Publication Date:
OSTI Identifier:
22364696
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 798; Journal Issue: 1; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ADVECTION; ASYMPTOTIC SOLUTIONS; BOUNDARY LAYERS; COMPUTERIZED SIMULATION; CONVECTION; GIANT STARS; HELMHOLTZ INSTABILITY; HYDRODYNAMICS; METALS; PROTONS; SHEAR; STAR EVOLUTION; THREE-DIMENSIONAL CALCULATIONS; TURBULENCE