skip to main content

Title: PLANET FORMATION IN STELLAR BINARIES. I. PLANETESIMAL DYNAMICS IN MASSIVE PROTOPLANETARY DISKS

About 20% of exoplanets discovered by radial velocity surveys reside in stellar binaries. To clarify their origin one has to understand the dynamics of planetesimals in protoplanetary disks within binaries. The standard description, accounting for only gas drag and gravity of the companion star, has been challenged recently, as the gravity of the protoplanetary disk was shown to play a crucial role in planetesimal dynamics. An added complication is the tendency of protoplanetary disks in binaries to become eccentric, giving rise to additional excitation of planetesimal eccentricity. Here, for the first time, we analytically explore the secular dynamics of planetesimals in binaries such as α Cen and γ Cep under the combined action of (1) gravity of the eccentric protoplanetary disk, (2) perturbations due to the (coplanar) eccentric companion, and (3) gas drag. We derive explicit solutions for the behavior of planetesimal eccentricity e {sub p} in non-precessing disks (and in precessing disks in certain limits). We obtain the analytical form of the distribution of the relative velocities of planetesimals, which is a key input for understanding their collisional evolution. Disk gravity strongly influences relative velocities and tends to push the sizes of planetesimals colliding with comparable objects at themore » highest speed to small values, ∼1 km. We also find that planetesimals in eccentric protoplanetary disks apsidally aligned with the binary orbit collide at lower relative velocities than in misaligned disks. Our results highlight the decisive role that disk gravity plays in planetesimal dynamics in binaries.« less
Authors:
;  [1]
  1. Department of Astrophysical Sciences, Princeton University, Ivy Lane, Princeton, NJ 08540 (United States)
Publication Date:
OSTI Identifier:
22364678
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 798; Journal Issue: 2; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; BINARY STARS; COMPARATIVE EVALUATIONS; DISTURBANCES; EXCITATION; GRAVITATION; MATHEMATICAL SOLUTIONS; ORBITS; PERTURBATION THEORY; PLANETS; PROTOPLANETS; RADIAL VELOCITY; SATELLITES; STAR EVOLUTION