skip to main content

SciTech ConnectSciTech Connect

Title: RECONCILING THE OBSERVED STAR-FORMING SEQUENCE WITH THE OBSERVED STELLAR MASS FUNCTION

We examine the connection between the observed star-forming sequence (SFR ∝ M {sup α}) and the observed evolution of the stellar mass function in the range 0.2 < z < 2.5. We find that the star-forming sequence cannot have a slope α ≲ 0.9 at all masses and redshifts because this would result in a much higher number density at 10 < log (M/M {sub ☉}) < 11 by z = 1 than is observed. We show that a transition in the slope of the star-forming sequence, such that α = 1 at log (M/M {sub ☉}) < 10.5 and α = 0.7-0.13z (Whitaker et al.) at log (M/M {sub ☉}) > 10.5, greatly improves agreement with the evolution of the stellar mass function. We then derive a star-forming sequence that reproduces the evolution of the mass function by design. This star-forming sequence is also well described by a broken power law, with a shallow slope at high masses and a steep slope at low masses. At z = 2, it is offset by ∼0.3 dex from the observed star-forming sequence, consistent with the mild disagreement between the cosmic star formation rate (SFR) and recent observations of the growth ofmore » the stellar mass density. It is unclear whether this problem stems from errors in stellar mass estimates, errors in SFRs, or other effects. We show that a mass-dependent slope is also seen in other self-consistent models of galaxy evolution, including semianalytical, hydrodynamical, and abundance-matching models. As part of the analysis, we demonstrate that neither mergers nor hidden low-mass quiescent galaxies are likely to reconcile the evolution of the mass function and the star-forming sequence. These results are supported by observations from Whitaker et al.« less
Authors:
;  [1] ;  [2] ;  [3]
  1. Department of Astronomy, Yale University, New Haven, CT 06511 (United States)
  2. Leiden Observatory, Leiden University, PO Box 9513, NL-2300 AA Leiden (Netherlands)
  3. Astrophysics Science Division, Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States)
Publication Date:
OSTI Identifier:
22364625
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 798; Journal Issue: 2; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; DENSITY; GALAXIES; LUMINOSITY; MASS; RED SHIFT; STAR EVOLUTION; STAR MODELS; STARS