skip to main content

Title: THE INNER COMA OF COMET C/2012 S1 (ISON) AT 0.53 AU AND 0.35 AU FROM THE SUN

Using long-slit spectroscopy at the NASA Infrared Telescope Facility, we extracted H{sub 2}O production rates and spatial profiles of gas rotational temperature and molecular column abundance in comet C/2012 S1 ISON, observed at heliocentric distances of 0.53 and 0.35 AU. These measurements uniquely probed the physical environment in the inner collisional coma of this comet during its first (and last) approach to the Sun since being emplaced in the Oort Cloud some 4.5 billion years ago. Our observations revealed a comet evolving on various timescales, both over hours and days. At 0.35 AU, ISON showed a considerable decrease in water production rate in less than 2 hr, likely declining from a major outburst. Our measured temperature spatial distributions reflect the competition between the processes that cause heating and cooling in the coma, and also provide insight about the prevalent mechanism(s) of releasing gas-phase H{sub 2}O. The observed temperatures suggest that the comet was likely ejecting icy material continuously, which sublimated in the coma and heated the ambient gas, augmenting fast H-atoms produced by H{sub 2}O photolysis. ISON adds to the very limited sample of comets for which spatial-spectral studies of water temperatures have been conducted. These studies are now feasible and can bemore » extended to comets having a variety of gas production rates. Continued synergy of such observations with both space missions like Rosetta and with physical models is strongly encouraged in order to gain a deeper understanding of the processes in the inner collisional zone of the cometary coma.« less
Authors:
; ;  [1] ; ; ;  [2]
  1. Department of Physics, Catholic University of America, Washington, DC 20061 (United States)
  2. Goddard Center For Astrobiology, NASA GSFC, Mail Stop 690, Greenbelt, MD 20771 (United States)
Publication Date:
OSTI Identifier:
22364516
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal Letters; Journal Volume: 796; Journal Issue: 1; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ATOMS; COMETS; DISTANCE; GAIN; INFRARED SPECTRA; NASA; PHOTOLYSIS; PROBES; SPACE; SPATIAL DISTRIBUTION; SUN; TELESCOPES; WATER