skip to main content

Title: TWO TIMESCALE DISPERSAL OF MAGNETIZED PROTOPLANETARY DISKS

Protoplanetary disks are likely to be threaded by a weak net flux of vertical magnetic field that is a remnant of the much larger fluxes present in molecular cloud cores. If this flux is approximately conserved its dynamical importance will increase as mass is accreted, initially by stimulating magnetorotational disk turbulence and subsequently by enabling wind angular momentum loss. We use fits to numerical simulations of ambipolar dominated disk turbulence to construct simplified one-dimensional evolution models for weakly magnetized protoplanetary disks. We show that the late onset of significant angular momentum loss in a wind can give rise to ''two timescale'' disk evolution in which a long phase of viscous evolution precedes rapid dispersal as the wind becomes dominant. The wide dispersion in disk lifetimes could therefore be due to varying initial levels of net flux. Magnetohydrodynamic (MHD) wind triggered dispersal differs from photoevaporative dispersal in predicting mass loss from small (<1 AU) scales, where thermal winds are suppressed. Our specific models are based on a limited set of simulations that remain uncertain, but qualitatively similar evolution appears likely if mass is lost from disks more quickly than flux, and if MHD winds become important as the plasma β decreases.
Authors:
; ;  [1]
  1. JILA, University of Colorado and NIST, 440 UCB, Boulder, CO 80309-0440 (United States)
Publication Date:
OSTI Identifier:
22364134
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal Letters; Journal Volume: 778; Journal Issue: 1; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ACCRETION DISKS; ANGULAR MOMENTUM; APPROXIMATIONS; ASTROPHYSICS; COMPUTERIZED SIMULATION; LIFETIME; LOSSES; MAGNETIC FIELDS; MAGNETOHYDRODYNAMICS; MASS TRANSFER; ONE-DIMENSIONAL CALCULATIONS; PLASMA; PROTOPLANETS; STELLAR WINDS; TURBULENCE