skip to main content

Title: POSSIBLE CHROMOSPHERIC ACTIVITY CYCLES IN AD LEO

AD Leo (GJ 388) is an active dM3 flare star that has been extensively observed both in the quiescent and flaring states. Since this active star is near the fully convective boundary, studying its long-term chromospheric activity in detail could be an appreciable contribution to dynamo theory. Here, using the Lomb-Scargle periodogram, we analyze the Ca II K line-core fluxes derived from CASLEO spectra obtained between 2001 and 2013 and the V magnitude from the ASAS database between 2004 and 2010. From both of these totally independent time series, we obtain a possible activity cycle with a period of approximately seven years and a less significant shorter cycle of approximately two years. A tentative interpretation is that a dynamo operating near the surface could be generating the longer cycle, while a second dynamo operating in the deep convection zone could be responsible for the shorter one. Based on the long duration of our observing program at CASLEO and the fact that we observe different spectral features simultaneously, we also analyze the relation between simultaneous measurements of the Na I index (R{sub D}{sup ′}), Hα, and Ca II K fluxes at different activity levels of AD Leo, including flares.
Authors:
; ;  [1] ;  [2]
  1. Instituto de Astronomía y Física del Espacio (CONICET-UBA), C.C. 67 Sucursal 28, C1428EHA-Buenos Aires (Argentina)
  2. Observatorio Astronómico de Córdoba, Córdoba (Argentina)
Publication Date:
OSTI Identifier:
22364042
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal Letters; Journal Volume: 781; Journal Issue: 1; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; APPROXIMATIONS; ASTROPHYSICS; CONVECTION; INDEXES; STARS; STELLAR CHROMOSPHERES; STELLAR FLARES; SURFACES; ZONES