skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Standing Kink modes in three-dimensional coronal loops

Abstract

So far, the straight flux tube model proposed by Edwin and Roberts is the most commonly used tool in practical coronal seismology, in particular, to infer values of the (coronal) magnetic field from observed, standing kink mode oscillations. In this paper, we compare the period predicted by this basic model with three-dimensional (3D) numerical simulations of standing kink mode oscillations, as the period is a crucial parameter in the seismological inversion to determine the magnetic field. We perform numerical simulations of standing kink modes in both straight and curved 3D coronal loops and consider excitation by internal and external drivers. The period of oscillation for the displacement of dense coronal loops is determined by the loop length and the kink speed, in agreement with the estimate based on analytical theory for straight flux tubes. For curved coronal loops embedded in a magnetic arcade and excited by an external driver, a secondary mode with a period determined by the loop length and external Alfvén speed is also present. When a low number of oscillations is considered, these two periods can result in a single, non-resolved (broad) peak in the power spectrum, particularly for low values of the density contrast for whichmore » the two periods will be relatively similar. In that case (and for this particular geometry), the presence of this additional mode would lead to ambiguous seismological estimates of the magnetic field strength.« less

Authors:
Publication Date:
OSTI Identifier:
22357278
Resource Type:
Journal Article
Journal Name:
Astrophysical Journal
Additional Journal Information:
Journal Volume: 784; Journal Issue: 2; Other Information: Country of input: International Atomic Energy Agency (IAEA); Journal ID: ISSN 0004-637X
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ALFVEN WAVES; ATMOSPHERES; COHERENT TUBE MODEL; COMPARATIVE EVALUATIONS; COMPUTERIZED SIMULATION; DENSITY; EXCITATION; MAGNETIC FIELDS; MAGNETOHYDRODYNAMICS; OSCILLATION MODES; OSCILLATIONS; SPECTRA; STELLAR CORONAE; SUN; THREE-DIMENSIONAL CALCULATIONS

Citation Formats

Pascoe, D. J., and De Moortel, I., E-mail: dpascoe@mcs.st-andrews.ac.uk. Standing Kink modes in three-dimensional coronal loops. United States: N. p., 2014. Web. doi:10.1088/0004-637X/784/2/101.
Pascoe, D. J., & De Moortel, I., E-mail: dpascoe@mcs.st-andrews.ac.uk. Standing Kink modes in three-dimensional coronal loops. United States. https://doi.org/10.1088/0004-637X/784/2/101
Pascoe, D. J., and De Moortel, I., E-mail: dpascoe@mcs.st-andrews.ac.uk. 2014. "Standing Kink modes in three-dimensional coronal loops". United States. https://doi.org/10.1088/0004-637X/784/2/101.
@article{osti_22357278,
title = {Standing Kink modes in three-dimensional coronal loops},
author = {Pascoe, D. J. and De Moortel, I., E-mail: dpascoe@mcs.st-andrews.ac.uk},
abstractNote = {So far, the straight flux tube model proposed by Edwin and Roberts is the most commonly used tool in practical coronal seismology, in particular, to infer values of the (coronal) magnetic field from observed, standing kink mode oscillations. In this paper, we compare the period predicted by this basic model with three-dimensional (3D) numerical simulations of standing kink mode oscillations, as the period is a crucial parameter in the seismological inversion to determine the magnetic field. We perform numerical simulations of standing kink modes in both straight and curved 3D coronal loops and consider excitation by internal and external drivers. The period of oscillation for the displacement of dense coronal loops is determined by the loop length and the kink speed, in agreement with the estimate based on analytical theory for straight flux tubes. For curved coronal loops embedded in a magnetic arcade and excited by an external driver, a secondary mode with a period determined by the loop length and external Alfvén speed is also present. When a low number of oscillations is considered, these two periods can result in a single, non-resolved (broad) peak in the power spectrum, particularly for low values of the density contrast for which the two periods will be relatively similar. In that case (and for this particular geometry), the presence of this additional mode would lead to ambiguous seismological estimates of the magnetic field strength.},
doi = {10.1088/0004-637X/784/2/101},
url = {https://www.osti.gov/biblio/22357278}, journal = {Astrophysical Journal},
issn = {0004-637X},
number = 2,
volume = 784,
place = {United States},
year = {Tue Apr 01 00:00:00 EDT 2014},
month = {Tue Apr 01 00:00:00 EDT 2014}
}