skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Differential emission measure analysis of a limb solar flare on 2012 July 19

Journal Article · · Astrophysical Journal

We perform Differential Emission Measure (DEM) analysis of an M7.7 flare that occurred on 2012 July 19 and was well observed by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamic Observatory. Using the observational data with unprecedented high temporal and spatial resolution from six AIA coronal passbands, we calculate the DEM of the flare and derive the time series of maps of DEM-weighted temperature and emission measure (EM). It is found that, during the flare, the highest EM region is located in the flare loop top with a value varying between ∼8.4 × 10{sup 28} cm{sup –5} and ∼2.5 × 10{sup 30} cm{sup –5}. The temperature there rises from ∼8 MK at about 04:40 UT (the initial rise phase) to a maximum value of ∼13 MK at about 05:20 UT (the hard X-ray peak). Moreover, we find a hot region that is above the flare loop top with a temperature even up to ∼16 MK. We also analyze the DEM properties of the reconnection site. The temperature and density there are not as high as that in the loop top and the flux rope, indicating that the main heating may not take place inside the reconnection site. In the end, we examine the dynamic behavior of the flare loops. Along the flare loop, both the temperature and the EM are the highest in the loop top and gradually decrease toward the footpoints. In the northern footpoint, an upward force appears with a biggest value in the impulsive phase, which we conjecture originates from chromospheric evaporation.

OSTI ID:
22357006
Journal Information:
Astrophysical Journal, Vol. 786, Issue 1; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English

Similar Records

OBSERVING FLUX ROPE FORMATION DURING THE IMPULSIVE PHASE OF A SOLAR ERUPTION
Journal Article · Tue May 10 00:00:00 EDT 2011 · Astrophysical Journal Letters · OSTI ID:22357006

OSCILLATION OF CURRENT SHEETS IN THE WAKE OF A FLUX ROPE ERUPTION OBSERVED BY THE SOLAR DYNAMICS OBSERVATORY
Journal Article · Sat Oct 01 00:00:00 EDT 2016 · Astrophysical Journal Letters · OSTI ID:22357006

Direct Observation of Two-step Magnetic Reconnection in a Solar Flare
Journal Article · Thu Aug 10 00:00:00 EDT 2017 · Astrophysical Journal Letters · OSTI ID:22357006