skip to main content

SciTech ConnectSciTech Connect

Title: Relativistic pair beams from TeV blazars: A source of reprocessed GeV emission rather than intergalactic heating

The interaction of TeV photons from blazars with the extragalactic background light produces a relativistic beam of electron-positron pairs streaming through the intergalactic medium (IGM). The fate of the beam energy is uncertain. By means of two- and three-dimensional particle-in-cell simulations, we study the nonlinear evolution of dilute ultra-relativistic pair beams propagating through the IGM. We explore a wide range of beam Lorentz factors γ {sub b} >> 1 and beam-to-plasma density ratios α << 1, so that our results can be extrapolated to the extreme parameters of blazar-induced beams (γ {sub b} ∼ 10{sup 6} and α ∼ 10{sup –15}, for powerful blazars). For cold beams, we show that the oblique instability governs the early stages of evolution, but its exponential growth terminates—due to self-heating of the beam in the transverse direction—when only a negligible fraction ∼(α/γ {sub b}){sup 1/3} ∼ 10{sup –7} of the beam energy has been transferred to the IGM plasma. Further relaxation of the beam proceeds through quasi-longitudinal modes, until the momentum dispersion in the direction of propagation saturates at Δp {sub b,} {sub ∥}/γ{sub b} m{sub e}c ∼ 0.2. This corresponds to a fraction ∼10% of the beam energy—irrespective of γ {sub b} ormore » α—being ultimately transferred to the IGM plasma (as compared to the heating efficiency of ∼50% predicted by one-dimensional models, which cannot properly account for the transverse broadening of the beam). For the warm beams generated by TeV blazars, the development of the longitudinal relaxation is suppressed, since the initial dispersion in beam momentum is already Δp {sub b0,} {sub ∥}/γ {sub b} m{sub e}c ≳ 1. Here, the fraction of beam energy ultimately deposited into the IGM is only ∼α γ {sub b} ∼ 10{sup –9}. It follows that most of the beam energy is still available to power the GeV emission produced by inverse Compton up-scattering of the cosmic microwave background by the beam pairs.« less
Authors:
 [1] ;  [2]
  1. Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)
  2. Department of Physics and Astronomy, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907 (United States)
Publication Date:
OSTI Identifier:
22356849
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 787; Journal Issue: 1; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; DISPERSIONS; EFFICIENCY; ELECTRONS; EMISSION; GAMMA RADIATION; GEV RANGE; INTERACTIONS; ONE-DIMENSIONAL CALCULATIONS; PHOTONS; PLASMA DENSITY; POSITRONS; RELATIVISTIC RANGE; RELAXATION; RELICT RADIATION; SIMULATION; TEV RANGE; THREE-DIMENSIONAL CALCULATIONS; VISIBLE RADIATION