skip to main content

Title: How long does a burst burst?

Several gamma-ray bursts (GRBs) last much longer (∼hours) in γ-rays than typical long GRBs (∼minutes), and it has recently been proposed that these 'ultra-long GRBs' may form a distinct population, probably with a different (e.g., blue supergiant) progenitor than typical GRBs. However, Swift observations suggest that many GRBs have extended central engine activities manifested as flares and internal plateaus in X-rays. We perform a comprehensive study on a large sample of Swift GRBs with X-Ray Telescope observations to investigate GRB central engine activity duration and to determine whether ultra-long GRBs are unusual events. We define burst duration t {sub burst} based on both γ-ray and X-ray light curves rather than using γ-ray observations alone. We find that t {sub burst} can be reliably measured in 343 GRBs. Within this 'good' sample, 21.9% GRBs have t {sub burst} ≳ 10{sup 3} s and 11.5% GRBs have t {sub burst} ≳ 10{sup 4} s. There is an apparent bimodal distribution of t {sub burst} in this sample. However, when we consider an 'undetermined' sample (304 GRBs) with t {sub burst} possibly falling in the gap between GRB duration T {sub 90} and the first X-ray observational time, as well as a selectionmore » effect against t {sub burst} falling into the first Swift orbital 'dead zone' due to observation constraints, the intrinsic underlying t {sub burst} distribution is consistent with being a single component distribution. We found that the existing evidence for a separate ultra-long GRB population is inconclusive, and further multi-wavelength observations are needed to draw a firmer conclusion. We also discuss the theoretical implications of our results. In particular, the central engine activity duration of GRBs is generally much longer than the γ-ray T {sub 90} duration and it does not even correlate with T {sub 90}. It would be premature to make a direct connection between T {sub 90} and the size of the progenitor star.« less
Authors:
; ;  [1] ;  [2] ;  [3]
  1. Center for Space Plasma and Aeronomic Research (CSPAR), The University of Alabama in Huntsville, Huntsville, AL 35899 (United States)
  2. Department of Physics and Astronomy, University of Nevada, Las Vegas, Las Vegas, NV 89154 (United States)
  3. Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ 08540 (United States)
Publication Date:
OSTI Identifier:
22356831
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 787; Journal Issue: 1; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; COSMIC GAMMA BURSTS; DISTRIBUTION; LIMITING VALUES; STARS; TELESCOPES; VISIBLE RADIATION; WAVELENGTHS; X RADIATION