skip to main content

SciTech ConnectSciTech Connect

Title: Dynamics of the transition corona

Magnetic reconnection between the open and closed magnetic fields in the corona is believed to play a crucial role in the corona/heliosphere coupling. At large scale, the exchange of open/closed connectivity is expected to occur in pseudo-streamer (PS) structures. However, there is neither clear observational evidence of how such coupling occurs in PSs, nor evidence for how the magnetic reconnection evolves. Using a newly developed technique, we enhance the off-limb magnetic fine structures observed with the Atmospheric Imaging Assembly and identify a PS-like feature located close to the northern coronal hole. We first identify that the magnetic topology associated with the observation is a PS, null-point (NP) related topology bounded by the open field. By comparing the magnetic field configuration with the EUV emission regions, we determined that most of the magnetic flux associated with plasma emission are small loops below the PS basic NP and open field bounding the PS topology. In order to interpret the evolution of the PS, we referred to a three-dimensional MHD interchange reconnection modeling the exchange of connectivity between small closed loops and the open field. The observed PS fine structures follow the dynamics of the magnetic field before and after reconnecting at themore » NP obtained by the interchange model. Moreover, the pattern of the EUV plasma emission is the same as the shape of the expected plasma emission location derived from the simulation. These morphological and dynamical similarities between the PS observations and the results from the simulation strongly suggest that the evolution of the PS, and in particular the opening/closing of the field, occurs via interchange/slipping reconnection at the basic NP of the PS. Besides identifying the mechanism at work in the large-scale coupling between the open and closed fields, our results highlight that interchange reconnection in PSs is a gradual physical process that differs from the impulsive reconnection of the solar-jet model.« less
Authors:
 [1] ; ; ; ;  [2]
  1. Space Weather Laboratory-NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD (United States)
  2. Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA (United States)
Publication Date:
OSTI Identifier:
22356761
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 787; Journal Issue: 2; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; COMPARATIVE EVALUATIONS; COUPLING; EMISSION; FINE STRUCTURE; HELIOSPHERE; MAGNETIC FIELD CONFIGURATIONS; MAGNETIC FIELDS; MAGNETIC FLUX; MAGNETIC RECONNECTION; MAGNETOHYDRODYNAMICS; PLASMA; SIMULATION; SUN; THREE-DIMENSIONAL CALCULATIONS; TOPOLOGY; ULTRAVIOLET RADIATION