skip to main content

SciTech ConnectSciTech Connect

Title: A parametric modeling approach to measuring the gas masses of circumstellar disks

The disks that surround young stars are mostly composed of molecular gas, which is harder to detect and interpret than the accompanying dust. Disk mass measurements have therefore relied on large and uncertain extrapolations from the dust to the gas. We have developed a grid of models to study the dependencies of isotopologue CO line strengths on disk structure and temperature parameters and find that a combination of {sup 13}CO and C{sup 18}O observations provides a robust measure of the gas mass. We apply this technique to Submillimeter Array observations of nine circumstellar disks and published measurements of six well studied disks. We find evidence for selective photodissociation of C{sup 18}O and determine masses to within a factor of about three. The inferred masses for the nine disks in our survey range from 0.7 to 6 M {sub Jup}, and all are well below the extrapolation from the interstellar medium gas-to-dust ratio of 100. This is consistent with the low masses of planets found around such stars, and may be due to accretion or photoevaporation of a dust-poor upper atmosphere. However, the masses may be underestimated if there are more efficient CO depletion pathways than those known in molecular cloudsmore » and cold cores.« less
Authors:
;  [1]
  1. Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States)
Publication Date:
OSTI Identifier:
22356674
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 788; Journal Issue: 1; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ATMOSPHERES; CARBON MONOXIDE; COSMIC GASES; DISSOCIATION; DUSTS; EXTRAPOLATION; MASS; MATTER; PHOTOLYSIS; PLANETS; PROTOPLANETS; SATELLITES; SIMULATION; STARS