skip to main content

Title: Magnetic inhibition of convection and the fundamental properties of low-mass stars. II. Fully convective main-sequence stars

We examine the hypothesis that magnetic fields are inflating the radii of fully convective main-sequence stars in detached eclipsing binaries (DEBs). The magnetic Dartmouth stellar evolution code is used to analyze two systems in particular: Kepler-16 and CM Draconis. Magneto-convection is treated assuming stabilization of convection and also by assuming reductions in convective efficiency due to a turbulent dynamo. We find that magnetic stellar models are unable to reproduce the properties of inflated fully convective main-sequence stars, unless strong interior magnetic fields in excess of 10 MG are present. Validation of the magnetic field hypothesis given the current generation of magnetic stellar evolution models therefore depends critically on whether the generation and maintenance of strong interior magnetic fields is physically possible. An examination of this requirement is provided. Additionally, an analysis of previous studies invoking the influence of star spots is presented to assess the suggestion that star spots are inflating stars and biasing light curve analyses toward larger radii. From our analysis, we find that there is not yet sufficient evidence to definitively support the hypothesis that magnetic fields are responsible for the observed inflation among fully convective main-sequence stars in DEBs.
Authors:
 [1] ;  [2]
  1. Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden)
  2. Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755 (United States)
Publication Date:
OSTI Identifier:
22356489
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 789; Journal Issue: 1; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ECLIPSE; EFFICIENCY; HYPOTHESIS; INHIBITION; MAGNETIC FIELDS; MAIN SEQUENCE STARS; REDUCTION; STABILIZATION; STAR EVOLUTION; VISIBLE RADIATION