skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-E-T-374: Sensitivity of ArcCHECK to Tomotherapy Delivery Errors: Dependence On Analysis Technique

Journal Article · · Medical Physics
DOI:https://doi.org/10.1118/1.4888707· OSTI ID:22355918
; ;  [1]
  1. Rush University Medical Center, Chicago, IL (United States)

Purpose: ArcCHECK (Sun Nuclear) is a cylindrical diode array detector allowing three-dimensional sampling of dose, particularly useful in treatment delivery QA of helical tomotherapy. Gamma passing rate is a common method of analyzing results from diode arrays, but is less intuitive in 3D with complex measured dose distributions. This study explores the sensitivity of gamma passing rate to choice of analysis technique in the context of its ability to detect errors introduced into the treatment delivery. Methods: Nine treatment plans were altered to introduce errors in: couch speed, gantry/sonogram synchronization, and leaf open time. Each plan was then delivered to ArcCHECK in each of the following arrangements: “offset,” when the high dose area of the plan is delivered to the side of the phantom so that some diode measurements will be on the order of the prescription dose, and “centered,” when the high dose is in the center of the phantom where an ion chamber measurement may be acquired, but the diode measurements are in the mid to low-dose region at the periphery of the plan. Gamma analysis was performed at 3%/3mm tolerance and both global and local gamma criteria. The threshold of detectability for each error type was calculated as the magnitude at which the gamma passing rate drops below 90%. Results: Global gamma criteria reduced the sensitivity in the offset arrangement (from 2.3% to 4.5%, 8° to 21°, and 3ms to 8ms for couch-speed decrease, gantry-error, and leaf-opening increase, respectively). The centered arrangement detected changes at 3.3%, 5°, and 4ms with smaller variation. Conclusion: Each arrangement has advantages; offsetting allows more sampling of the higher dose region, while centering allows an ion chamber measurement and potentially better use of tools such as 3DVH, at the cost of positioning more of the diodes in the sometimes noisy mid-dose region.

OSTI ID:
22355918
Journal Information:
Medical Physics, Vol. 41, Issue 6; Other Information: (c) 2014 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-2405
Country of Publication:
United States
Language:
English