skip to main content

Title: SU-E-T-342: Use of Patient Geometry Measurements to Predict Dosimetric Gain with VMAT Over 3D for Chestwall and Regional Nodal Radiation

Purpose: To predict the dosimetric gain of VMAT over 3D for the treatment ofchestwall/IMN/supraclavicular nodes using geometric parameters acquired during simulation Methods: CT scans for 20 left and 20 right sided patients were retrospectively analyzed toobtain percent ipsilateral lung volume included in the PWT and supraclavicular fields, central lung depth (CLD), maximum lung depth (MLD), separation, chestwall concavity (defined here as the product of CLD and separation) and the maximum heart depth (MHD). VMAT, PWT and P/E plans were done for each case. The ipsilateral lung V20 Gy and mean, total lung V20 Gy and mean, heart V25 Gy and mean were noted for each plan. Correlation coefficients were obtained and linear regression models were built using data from the above training set of patients and then tested on 4 new patients. Results: The decrease in ipsilateral lung V20 Gy, total lung V20 Gy, ipsilateral lung mean and total lung mean with VMAT over PWT significantly (p<0.05) correlated with the percent volume of ipsilateral lung included in the PWT and supraclavicular fields with correlation coefficient values of r = 0.83, r = 0.77, r = 0.78 and r = 0.75 respectively. Significant correlations were also found between MHD and themore » decrease in heart V25 Gy and mean of r = 0.77 and r = 0.67 respectively. Dosimetric improvement with VMAT over P/E plans showed no correlation to any of the geometric parameters investigated in this study. The dosimetric gain predicted for the 4 test cases by the linear regression models given their respective percent ipsilateral lung volumes fell within the 95% confidence intervals around the best regression fit. Conclusion: The percent ipsilateral lung volume appears to be a strong predictor of the dosimetric gain on using VMAT over PWT apriori.« less
; ; ;  [1] ;  [2] ;  [3]
  1. The Mount Sinai Medical Center, NY, NY (United States)
  2. Mem Sloan-Kettering Cancer Ctr, NY, NY (United States)
  3. The Mount Sinai School of Medicine, NY, NY (United States)
Publication Date:
OSTI Identifier:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 41; Journal Issue: 6; Other Information: (c) 2014 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States