skip to main content

Title: A global magnetic topology model for magnetic clouds. III

In two previous papers, we presented a global model for the analysis of magnetic clouds (MCs), where the three components of the magnetic field were fitted to the corresponding Geocentric Solar Ecliptic experimental data, obtaining reliable information, for example, about the orientation of these events in the interplanetary medium. That model, due to its non-force-free character, (∇p ≠ 0), could be extended to determine the plasma behavior. In the present work, we develop that extension, now including the plasma behavior inside the cloud through the analysis of the plasma pressure, and define a fitting procedure where the pressure and the magnetic field components are fitted simultaneously. After deducing the magnetic field topology and the current density components of the model, we calculate the expression of the pressure tensor and, in particular, its trace. In light of the results, we conclude that incorporating the plasma behavior in the analysis of the MCs can give us a better scenario in which to understand the physical mechanisms involved in the evolution of such magnetic structures in the interplanetary medium.
Authors:
 [1]
  1. Departamento de Física y Matemáticas, Universidad de Alcalá, E-28801 Alcalá de Henares, Madrid (Spain)
Publication Date:
OSTI Identifier:
22351474
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 784; Journal Issue: 1; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; CURRENT DENSITY; EVOLUTION; HELIOSPHERE; MAGNETIC FIELDS; MASS; PLASMA PRESSURE; SOLAR WIND; SUN; TOPOLOGY; VISIBLE RADIATION