skip to main content

SciTech ConnectSciTech Connect

Title: Improved reflection models of black hole accretion disks: Treating the angular distribution of X-rays

X-ray reflection models are used to constrain the properties of the accretion disk, such as the degree of ionization of the gas and the elemental abundances. In combination with general relativistic ray tracing codes, additional parameters like the spin of the black hole and the inclination to the system can be determined. However, current reflection models used for such studies only provide angle-averaged solutions for the flux reflected at the surface of the disk. Moreover, the emission angle of the photons changes over the disk due to relativistic light bending. To overcome this simplification, we have constructed an angle-dependent reflection model with the XILLVER code and self-consistently connected it with the relativistic blurring code RELLINE. The new model, relxill, calculates the proper emission angle of the radiation at each point on the accretion disk and then takes the corresponding reflection spectrum into account. We show that the reflected spectra from illuminated disks follow a limb-brightening law highly dependent on the ionization of disk and yet different from the commonly assumed form I∝ln (1 + 1/μ). A detailed comparison with the angle-averaged model is carried out in order to determine the bias in the parameters obtained by fitting a typical relativisticmore » reflection spectrum. These simulations reveal that although the spin and inclination are mildly affected, the Fe abundance can be overestimated by up to a factor of two when derived from angle-averaged models. The fit of the new model to the Suzaku observation of the Seyfert galaxy Ark 120 clearly shows a significant improvement in the constraint of the physical parameters, in particular by enhancing the accuracy in the inclination angle and the spin determinations.« less
Authors:
; ; ;  [1] ;
  1. Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States)
Publication Date:
OSTI Identifier:
22351429
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 782; Journal Issue: 2; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ABUNDANCE; ACCRETION DISKS; ACCURACY; ANGULAR DISTRIBUTION; BLACK HOLES; EMISSION; INCLINATION; LIMITING VALUES; MATHEMATICAL SOLUTIONS; RADIANT HEAT TRANSFER; REFLECTION; RELATIVISTIC RANGE; SEYFERT GALAXIES; SIMULATION; SPECTRA; SPIN; SURFACES; VISIBLE RADIATION; X RADIATION