skip to main content

Title: Generation of magnetic field on the accretion disk around a proto-first-star

The generation process of a magnetic field around a proto-first-star is studied. Utilizing the recent numerical results of proto-first-star formation based on radiation hydrodynamics simulations, we assess the magnetic field strength generated by the radiative force and the Biermann battery effect. We find that a magnetic field of ∼10{sup –9} G is generated on the surface of the accretion disk around the proto-first-star. The field strength on the accretion disk is smaller by two orders of magnitude than the critical value, above which the gravitational fragmentation of the disk is suppressed. Thus, the generated seed magnetic field hardly affect the dynamics of on-site first star formation directly, unless an efficient amplification process is taken into consideration. We also find that the generated magnetic field is continuously blown out from the disk on the outflows to the poles, that are driven by the thermal pressure of photoheated gas. The strength of the diffused magnetic field in low-density regions is ∼10{sup –14}-10{sup –13} G at n {sub H} = 10{sup 3} cm{sup –3}, which could play an important role in the next generation star formation, as well as the seeds of the magnetic field in the present-day universe.
Authors:
;  [1] ;  [2]
  1. Department of Physics, Konan University, Kobe 658-8501 (Japan)
  2. Department of Physics and Research Center for the Early Universe, The University of Tokyo, Tokyo 113-0033 (Japan)
Publication Date:
OSTI Identifier:
22351403
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 782; Journal Issue: 2; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ACCRETION DISKS; AMPLIFICATION; DENSITY; HYDRODYNAMICS; MAGNETIC FIELDS; PROTOSTARS; RADIANT HEAT TRANSFER; STARS; SURFACES; UNIVERSE