skip to main content

SciTech ConnectSciTech Connect

Title: PS1-10jh: The disruption of a main-sequence star of near-solar composition

When a star comes within a critical distance to a supermassive black hole (SMBH), immense tidal forces disrupt the star, resulting in a stream of debris that falls back onto the SMBH and powers a luminous flare. In this paper, we perform hydrodynamical simulations of the disruption of a main-sequence star by an SMBH to characterize the evolution of the debris stream after a tidal disruption. We demonstrate that this debris stream is confined by self-gravity in the two directions perpendicular to the original direction of the star's travel and as a consequence has a negligible surface area and makes almost no contribution to either the continuum or line emission. We therefore propose that any observed emission lines are not the result of photoionization in this unbound debris, but are produced in the region above and below the forming elliptical accretion disk, analogous to the broad-line region (BLR) in steadily accreting active galactic nuclei. As each line within a BLR is observationally linked to a particular location in the accretion disk, we suggest that the absence of a line indicates that the accretion disk does not yet extend to the distance required to produce that line. This model can bemore » used to understand the spectral properties of the tidal disruption event PS1-10jh, for which He II lines are observed, but the Balmer series and He I are not. Using a maximum likelihood analysis, we show that the disruption of a main-sequence star of near-solar composition can reproduce this event.« less
Authors:
; ;  [1]
  1. Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)
Publication Date:
OSTI Identifier:
22351386
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 783; Journal Issue: 1; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ACCRETION DISKS; BLACK HOLES; DISTANCE; EMISSION; GALACTIC EVOLUTION; GALAXY NUCLEI; GRAVITATION; GRAVITATIONAL LENSES; HYDRODYNAMICS; MAIN SEQUENCE STARS; MAXIMUM-LIKELIHOOD FIT; PHOTOIONIZATION; SIMULATION; STREAMS