skip to main content

SciTech ConnectSciTech Connect

Title: A challenging interpretation of a hexagonally layered protein structure

The authors describe the structure determination of a hexagonally layered protein structure that suffered from a complicated combination of translational non-crystallographic symmetry and hemihedral twinning. This case serves as a reminder that broken crystallographic symmetry resulting from doubling of a unit-cell axis often requires a new choice of origin. The carboxysome is a giant protein complex that acts as a metabolic organelle in cyanobacteria and some chemoautotrophs. Its outer structure is formed by the assembly of thousands of copies of hexameric shell protein subunits into a molecular layer. The structure determination of a CcmK1 shell protein mutant (L11K) from the β-carboxysome of the cyanobacterium Synechocystis PCC6803 led to challenges in structure determination. Twinning, noncrystallographic symmetry and packing of hexameric units in a special arrangement led to initial difficulties in space-group assignment. The correct space group was clarified after initial model refinement revealed additional symmetry. This study provides an instructive example in which broken symmetry requires a new choice of unit-cell origin in order to identify the highest symmetry space group. An additional observation related to the packing arrangement of molecules in this crystal suggests that these hexameric shell proteins might have lower internal symmetry than previously believed.
Authors:
;  [1]
  1. UCLA, Los Angeles, CA 90095 (United States)
Publication Date:
OSTI Identifier:
22351321
Resource Type:
Journal Article
Resource Relation:
Journal Name: Acta Crystallographica. Section D: Biological Crystallography; Journal Volume: 70; Journal Issue: Pt 1; Other Information: PMCID: PMC4030663; PMID: 24419393; PUBLISHER-ID: mn5039; OAI: oai:pubmedcentral.nih.gov:4030663; Copyright (c) International Union of Crystallography 2014; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
Denmark
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; ALLOCATIONS; CRYSTALS; LAYERS; MOLECULES; ORIGIN; PROTEIN STRUCTURE; PROTEINS; SHELLS; SPACE GROUPS; STOWING; SYMMETRY; TWINNING