skip to main content

Title: Experimental dynamical characterization of five autonomous chaotic oscillators with tunable series resistance

In this paper, an experimental characterization of the dynamical properties of five autonomous chaotic oscillators, based on bipolar-junction transistors and obtained de-novo through a genetic algorithm in a previous study, is presented. In these circuits, a variable resistor connected in series to the DC voltage source acts as control parameter, for a range of which the largest Lyapunov exponent, correlation dimension, approximate entropy, and amplitude variance asymmetry are calculated, alongside bifurcation diagrams and spectrograms. Numerical simulations are compared to experimental measurements. The oscillators can generate a considerable variety of regular and chaotic sine-like and spike-like signals.
Authors:
 [1]
  1. MR-Lab, Center for Mind/Brain Science, University of Trento, Trento, Italy and Scientific Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (Italy)
Publication Date:
OSTI Identifier:
22351014
Resource Type:
Journal Article
Resource Relation:
Journal Name: Chaos (Woodbury, N. Y.); Journal Volume: 24; Journal Issue: 3; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ALGORITHMS; APPROXIMATIONS; BIFURCATION; CHAOS THEORY; COMPUTERIZED SIMULATION; CONTROL; ENTROPY; JUNCTION TRANSISTORS; LYAPUNOV METHOD; OSCILLATORS; RESISTORS; TUNING