skip to main content

Title: Cd{sub 1−x}Mn{sub x}Te ultrasmall quantum dots growth in a silicate glass matrix by the fusion method

In this study, we synthesized Cd{sub 1−x}Mn{sub x}Te ultrasmall quantum dots (USQDs) in SiO{sub 2}-Na{sub 2}CO{sub 3}-Al{sub 2}O{sub 3}-B{sub 2}O{sub 3} glass system using the fusion method. Growth of these Cd{sub 1−x}Mn{sub x}Te USQDs was confirmed by optical absorption, atomic force microscopy (AFM), magnetic force microscopy (MFM), scanning transmission electron microscopy (TEM), and electron paramagnetic resonance (EPR) measurements. The blueshift of absorption transition with increasing manganese concentration gives evidence of incorporation of manganese ions (Mn{sup 2+}) in CdTe USQDs. AFM, TEM, and MFM confirmed, respectively, the formation of high quality Cd{sub 1−x}Mn{sub x}Te USQDs with uniformly distributed size and magnetic phases. Furthermore, EPR spectra showed six lines associated to the S = 5/2 spin half-filled d-state, characteristic of Mn{sup 2+}, and confirmed that Mn{sup 2+} are located in the sites core and surface of the CdTe USQD. Therefore, synthesis of high quality Cd{sub 1−x}Mn{sub x}Te USQDs may allow the control of optical and magnetic properties.
Authors:
; ;  [1] ; ;  [2]
  1. Laboratório de Novos Materiais Isolantes e Semicondutores (LNMIS), Instituto de Física, Universidade Federal de Uberlândia, 38408-100 Uberlândia, MG (Brazil)
  2. Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto, SP (Brazil)
Publication Date:
OSTI Identifier:
22350807
Resource Type:
Journal Article
Resource Relation:
Journal Name: Applied Physics Letters; Journal Volume: 105; Journal Issue: 13; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; ABSORPTION; ALUMINIUM OXIDES; ATOMIC FORCE MICROSCOPY; BORON OXIDES; CADMIUM COMPOUNDS; CADMIUM TELLURIDES; ELECTRON SPIN RESONANCE; GLASS; MAGNETIC FIELDS; MAGNETIC PROPERTIES; MANGANESE COMPOUNDS; QUANTUM DOTS; SILICON OXIDES; SODIUM CARBONATES; SPECTRA; SPIN; SURFACES; SYNTHESIS; TELLURIUM COMPOUNDS; TRANSMISSION ELECTRON MICROSCOPY