skip to main content

SciTech ConnectSciTech Connect

Title: The dominant factors affecting the memory characteristics of (Ta{sub 2}O{sub 5}){sub x}(Al{sub 2}O{sub 3}){sub 1−x} high-k charge-trapping devices

The prototypical charge-trapping memory devices with the structure p-Si/Al{sub 2}O{sub 3}/(Ta{sub 2}O{sub 5}){sub x}(Al{sub 2}O{sub 3}){sub 1−x}/Al{sub 2}O{sub 3}/Pt(x = 0.5, 0.3, and 0.1) were fabricated by using atomic layer deposition and RF magnetron sputtering techniques. A memory window of 7.39 V with a charge storage density of 1.97 × 10{sup 13 }cm{sup −2} at a gate voltage of ±11 V was obtained for the memory device with the composite charge trapping layer (Ta{sub 2}O{sub 5}){sub 0.5}(Al{sub 2}O{sub 3}){sub 0.5}. All memory devices show fast program/erase speed and excellent endurance and retention properties, although some differences in their memory performance exist, which was ascribed to the relative individual band alignments of the composite (Ta{sub 2}O{sub 5}){sub x}(Al{sub 2}O{sub 3}){sub 1−x} with Si.
Authors:
;  [1] ; ; ; ; ; ; ; ; ; ; ;  [2]
  1. National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China)
  2. National Laboratory of Solid State Microstructures and Department of Materials Science and Engineering, Nanjing University, Nanjing 210093 (China)
Publication Date:
OSTI Identifier:
22350768
Resource Type:
Journal Article
Resource Relation:
Journal Name: Applied Physics Letters; Journal Volume: 105; Journal Issue: 12; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; ALUMINIUM OXIDES; COMPOSITE MATERIALS; DENSITY; ELECTRIC POTENTIAL; LAYERS; MAGNETRONS; MEMORY DEVICES; SILICON; TANTALUM OXIDES; TRAPPING