skip to main content

Title: Oxygen adsorption and electronic transport properties of Fe-substituted YBaCo{sub 4}O{sub 7} compounds

Graphical abstract: - Highlights: • The conduction mechanism of YBaCo{sub 4}O{sub 7} system was established. • The effect of Fe substitution on the electronic transport was discussed. • The effect of oxygen adsorption/desorption processes on the transport properties was investigated. - Abstract: YBaCo{sub 4−x}Fe{sub x}O{sub 7} (0.0 ≤ x ≤ 0.8) samples were prepared by the solid-state reaction method and the effect of Fe substitution and oxygen adsorption/desorption on the electronic transport properties was investigated from room temperature to 900 °C. Fe for Co substitution results in a slight decline in the oxygen storage capacity at lower temperature (200–400 °C) and an increase of the phase-decomposition temperature at higher temperature (700–900 °C). Both the hole concentration and mobility are reduced in the Fe-containing compositions. Electrical resistivity, Seebeck coefficient, and conduction activation energy increase with the increasing Fe content. A close correlativity between oxygen adsorption and electronic transport behavior was observed in YBaCo{sub 4−x}Fe{sub x}O{sub 7} system. Oxygen adsorption decreases the electrical resistivity and Seebeck coefficients because of the increase of hole concentration at lower temperature and the phase decomposition at higher temperature.
Authors:
 [1] ;  [2] ; ;  [1]
  1. School of Science, Henan Institute of Engineering, Zhengzhou 451191 (China)
  2. School of Science, Jiaozuo Teacher's College, Jiaozuo 454001 (China)
Publication Date:
OSTI Identifier:
22348633
Resource Type:
Journal Article
Resource Relation:
Journal Name: Materials Research Bulletin; Journal Volume: 53; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; ACTIVATION ENERGY; ADSORPTION; DECOMPOSITION; DESORPTION; DIFFUSION; ELECTRIC CONDUCTIVITY; OXIDES; OXYGEN; SOLIDS; THERMAL GRAVIMETRIC ANALYSIS