skip to main content

Title: Site-related near-infrared luminescence in MAl{sub 12}O{sub 19} (M = Ca, Sr, Ba):Fe{sup 3+} phosphors

Graphical abstract: - Highlights: • Intense 700–850 nm NIR emissions in MAl{sub 12}O{sub 19} (M = Ca, Sr, Ba):1%Fe{sup 3+} has been obtained. • The NIR emissions can be ascribed to the octahedral Fe{sup 3+} sites. • The site symmetry of Fe{sup 3+} in CA{sub 6} and SA{sub 6} may be lower than that in BA{sub 6}. • The phosphors may be potentially applied in the high-resolution bioimaging. - Abstract: Intense and broad near-infrared (NIR) photoluminescence (PL) peaks locating at 777, 808 and 810 nm is observed for BaAl{sub 12}O{sub 19} (BA{sub 6}):1%Fe{sup 3+}, CaAl{sub 12}O{sub 19} (CA{sub 6}):1%Fe{sup 3+} and SrAl{sub 12}O{sub 19} (SA{sub 6}):1%Fe{sup 3+}, respectively. Electron paramagnetic resonance (EPR) spectra show that Fe{sup 3+} ions substitute for the different types of Al{sup 3+} sites simultaneously. Meanwhile, the luminescence of Fe{sup 3+} in MAl{sub 12}O{sub 19} (M = Ca, Sr and Ba) are ascribed to octahedral Fe{sup 3+}. In addition, the site symmetry of Fe{sup 3+} in CA{sub 6}/SA{sub 6} is lower compared with BA{sub 6}, deduced from the photoluminescence excitation (PLE), EPR and Fourier-transform infrared (FT-IR) spectra. These phosphors can be considered as good candidates for the applications in the field of high-resolution bioimaging.
Authors:
;  [1] ;  [1] ;  [2] ;  [1]
  1. State Key Laboratory of Luminescent Materials and Devices, and Institute of Optical Communication Materials, South China University of Technology, Guangzhou 510641 (China)
  2. School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (China)
Publication Date:
OSTI Identifier:
22348576
Resource Type:
Journal Article
Resource Relation:
Journal Name: Materials Research Bulletin; Journal Volume: 51; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; CRYSTAL STRUCTURE; ELECTRON SPIN RESONANCE; EXCITATION; FOURIER TRANSFORMATION; INFRARED SPECTRA; IRON IONS; OPTICAL PROPERTIES; PEAKS; PHOTOLUMINESCENCE