skip to main content

SciTech ConnectSciTech Connect

Title: Spectral inversion of the Hα line for a plasma feature in the upper chromosphere of the quiet sun

We propose a generalization of Becker's cloud model (BCM): an embedded cloud model (ECM)—for the inversion of the core of the Hα line spectrum of a plasma feature either lying high above the forest of chromospheric features or partly embedded in the outermost part of this forest. The fundamental assumption of the ECM is that the background light incident on the bottom of the feature from below is equal to the ensemble-average light at the same height. This light is related to the observed ensemble-average light via the radiative transfer that is described by the four parameters newly introduced in addition to the original four parameters of the BCM. Three of these new parameters are independently determined from the observed rms contrast profile of the ensemble. We use the constrained χ{sup 2} fitting technique to determine the five free parameters. We find that the ECM leads to the fairly good fitting of the observed line profiles and the reasonable inference of physical parameters in quiet regions where the BCM cannot. Our first application of this model to a quiet region of the Sun indicates that the model can produce the complete velocity map and Doppler width map of the region.
Authors:
 [1]
  1. Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of)
Publication Date:
OSTI Identifier:
22348283
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 780; Journal Issue: 1; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; CHROMOSPHERE; COMPUTERIZED SIMULATION; DATA ANALYSIS; DOPPLER EFFECT; MAPS; PLASMA; RADIANT HEAT TRANSFER; SPECTRA; SUN; VELOCITY; VISIBLE RADIATION