skip to main content

SciTech ConnectSciTech Connect

Title: A merger shock in A2034

We present a 250 ks Chandra observation of the cluster merger A2034 with the aim of understanding the nature of a sharp edge previously characterized as a cold front. The new data reveal that the edge is coherent over a larger opening angle and is significantly more bow-shock-shaped than previously thought. Within ∼27° about the axis of symmetry of the edge, the density, temperature, and pressure drop abruptly by factors of 1.83{sub −0.08}{sup +0.09}, 1.85{sub −0.41}{sup +0.41}, and 3.4{sub −0.7}{sup +0.8}, respectively. This is inconsistent with the pressure equilibrium expected of a cold front and we conclude that the edge is a shock front. We measure a Mach number M=1.59{sub −0.07}{sup +0.06} and corresponding shock velocity v {sub shock} ≅ 2057 km s{sup –1}. Using spectra collected at the MMT with the Hectospec multi-object spectrograph, we identify 328 spectroscopically confirmed cluster members. Significantly, we find a local peak in the projected galaxy density associated with a bright cluster galaxy that is located just ahead of the nose of the shock. The data are consistent with a merger viewed within ∼23° of the plane of the sky. The merging subclusters are now moving apart along a north-south axis approximately 0.3 Gyrmore » after a small impact parameter core passage. The gas core of the secondary subcluster, which was driving the shock, appears to have been disrupted by the merger. Without a driving 'piston,' we speculate that the shock is dying. Finally, we propose that the diffuse radio emission near the shock is due to the revival of pre-existing radio plasma that has been overrun by the shock.« less
Authors:
; ;  [1] ; ; ; ; ; ;  [2]
  1. Australian Astronomical Observatory, P.O. Box 915, North Ryde, NSW 1670 (Australia)
  2. Harvard Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)
Publication Date:
OSTI Identifier:
22348229
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 780; Journal Issue: 2; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; APPROXIMATIONS; DENSITY; EMISSION; EQUILIBRIUM; GALAXY CLUSTERS; IMPACT PARAMETER; MACH NUMBER; PLASMA; PRESSURE DROP; SHOCK WAVES; SPECTRA; SYMMETRY; X-RAY GALAXIES