skip to main content

SciTech ConnectSciTech Connect

Title: Structure determination of an 11-subunit exosome in complex with RNA by molecular replacement

The crystallographic steps towards the structure determination of a complete eukaryotic exosome complex bound to RNA are presented. Phasing of this 11-protein subunit complex was carried out via molecular replacement. The RNA exosome is an evolutionarily conserved multi-protein complex involved in the 3′ degradation of a variety of RNA transcripts. In the nucleus, the exosome participates in the maturation of structured RNAs, in the surveillance of pre-mRNAs and in the decay of a variety of noncoding transcripts. In the cytoplasm, the exosome degrades mRNAs in constitutive and regulated turnover pathways. Several structures of subcomplexes of eukaryotic exosomes or related prokaryotic exosome-like complexes are known, but how the complete assembly is organized to fulfil processive RNA degradation has been unclear. An atomic snapshot of a Saccharomyces cerevisiae 420 kDa exosome complex bound to an RNA substrate in the pre-cleavage state of a hydrolytic reaction has been determined. Here, the crystallographic steps towards the structural elucidation, which was carried out by molecular replacement, are presented.
Authors:
;  [1]
  1. Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried (Germany)
Publication Date:
OSTI Identifier:
22347835
Resource Type:
Journal Article
Resource Relation:
Journal Name: Acta Crystallographica. Section D: Biological Crystallography; Journal Volume: 69; Journal Issue: Pt 11; Other Information: PMCID: PMC3817696; PMID: 24189234; PUBLISHER-ID: ba5203; OAI: oai:pubmedcentral.nih.gov:3817696; Copyright (c) Makino & Conti 2013; This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
Denmark
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; ATOMS; CLEAVAGE; CRYSTALS; DECAY; RNA; SUBSTRATES