skip to main content

Title: Structural characteristics of alkaline phosphatase from the moderately halophilic bacterium Halomonas sp. 593

In order to clarify the structural basis of the halophilic characteristics of an alkaline phosphatase derived from the moderate halophile Halomonas sp. 593 (HaAP), the tertiary structure of HaAP was determined to 2.1 Å resolution by X-ray crystallography. The structural properties of surface negative charge and core hydrophobicity were shown to be intermediate between those characteristic of halophiles and non-halophiles, and may explain the unique functional adaptation to a wide range of salt concentrations. Alkaline phosphatase (AP) from the moderate halophilic bacterium Halomonas sp. 593 (HaAP) catalyzes the hydrolysis of phosphomonoesters over a wide salt-concentration range (1–4 M NaCl). In order to clarify the structural basis of its halophilic characteristics and its wide-range adaptation to salt concentration, the tertiary structure of HaAP was determined by X-ray crystallography to 2.1 Å resolution. The unit cell of HaAP contained one dimer unit corresponding to the biological unit. The monomer structure of HaAP contains a domain comprised of an 11-stranded β-sheet core with 19 surrounding α-helices similar to those of APs from other species, and a unique ‘crown’ domain containing an extended ‘arm’ structure that participates in formation of a hydrophobic cluster at the entrance to the substrate-binding site. The HaAP structure alsomore » displays a unique distribution of negatively charged residues and hydrophobic residues in comparison to other known AP structures. AP from Vibrio sp. G15-21 (VAP; a slight halophile) has the highest similarity in sequence (70.0% identity) and structure (C{sup α} r.m.s.d. of 0.82 Å for the monomer) to HaAP. The surface of the HaAP dimer is substantially more acidic than that of the VAP dimer (144 exposed Asp/Glu residues versus 114, respectively), and thus may enable the solubility of HaAP under high-salt conditions. Conversely, the monomer unit of HaAP formed a substantially larger hydrophobic interior comprising 329 C atoms from completely buried residues, whereas that of VAP comprised 264 C atoms, which may maintain the stability of HaAP under low-salt conditions. These characteristics of HaAP may be responsible for its unique functional adaptation permitting activity over a wide range of salt concentrations.« less
Authors:
;  [1] ;  [2] ; ; ;  [1] ;  [2] ;  [3] ;  [2] ;  [1]
  1. Japan Atomic Energy Agency, 2-4 Shirakata-shirane, Tokai, Ibaraki 319-1195 (Japan)
  2. Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065 (Japan)
  3. Florida State University, 1115 West Call Street, Tallahassee, FL 32306-4300 (United States)
Publication Date:
OSTI Identifier:
22347787
Resource Type:
Journal Article
Resource Relation:
Journal Name: Acta Crystallographica. Section D: Biological Crystallography; Journal Volume: 70; Journal Issue: Pt 3; Other Information: PMCID: PMC3949524; PMID: 24598750; PUBLISHER-ID: mh5105; OAI: oai:pubmedcentral.nih.gov:3949524; Copyright (c) Arai et al. 2014; This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
Denmark
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; ATOMS; CRYSTALLOGRAPHY; CRYSTALS; DIMERS; DISTRIBUTION; MONOMERS; RESOLUTION; SALTS; SHEETS; SOLUBILITY; STABILITY; SUBSTRATES; SURFACES