skip to main content

Title: The chemical instability of Na{sub 2}IrO{sub 3} in air

Highlights: • Na{sub 2}IrO{sub 3} decomposes rapidly in laboratory air. • The decomposition requires the simultaneous presence of CO{sub 2} and H{sub 2}O. • Decomposition results in a dramatic change in the magnetic properties. • Second 5 K feature in magnetic susceptibility not previously reported. - Abstract: We report that Na{sub 2}IrO{sub 3}, which has a layered honeycomb iridium oxide sublattice interleaved by Na planes, decomposes in laboratory air while maintaining the same basic crystal structure. The decomposition reaction was monitored by time-dependent powder X-ray diffraction under different ambient atmospheres, through which it was determined that it occurs only in the simultaneous presence of both CO{sub 2} and H{sub 2}O. A hydrated sodium carbonate is the primary decomposition product along with altered Na{sub 2}IrO{sub 3}. The diffraction signature of the altered Na{sub 2}IrO{sub 3} is quite similar to that of the pristine material, which makes the detection of decomposition difficult in a sample handled under ordinary laboratory conditions. The decomposed samples show a significantly decreased magnetic susceptibility and the disappearance of the low temperature antiferromagnetic transition considered to be characteristic of the phase. Samples that have never been exposed to air after synthesis display a previously unreported magnetic transition atmore » 5 K.« less
Authors:
; ; ;
Publication Date:
OSTI Identifier:
22345271
Resource Type:
Journal Article
Resource Relation:
Journal Name: Materials Research Bulletin; Journal Volume: 52; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY; ANTIFERROMAGNETISM; CARBON DIOXIDE; CLATHRATES; CRYSTAL STRUCTURE; DECOMPOSITION; DETECTION; IRIDIUM OXIDES; MAGNETIC MATERIALS; MAGNETIC SUSCEPTIBILITY; SODIUM CARBONATES; SYNTHESIS; TIME DEPENDENCE; WATER; X-RAY DIFFRACTION