skip to main content

SciTech ConnectSciTech Connect

Title: Thiol-functionalized polysilsesquioxane as efficient adsorbent for adsorption of Hg(II) and Mn(II) from aqueous solution

Highlights: • PMPSQ was promising adsorbent for the removal of Hg(II) and Mn(II). • The adsorption kinetics followed the pseudo-second-order model. • The adsorption isotherms can be described by the monolayer Langmuir model. • The adsorption was controlled by film diffusion and chemical ion-exchange mechanism. - Abstract: Thiol-functionalized polysilsesquioxane was synthesized and used for the adsorption of Hg(II) and Mn(II) from aqueous solution. Results showed that the optimal pH was about 6 and 5 for Hg(II) and Mn(II), respectively. Adsorption kinetics showed that the adsorption equilibriums were established within 100 min and followed pseudo-second-order model. Adsorption isotherms revealed that the adsorption capacities increased with the increasing of temperature. The adsorption was found to be well described by the monolayer Langmuir isotherm model and took place by chemical ion-exchange mechanism. The thermodynamic properties indicated the adsorption processes were spontaneous and endothermic nature. Selectively adsorption showed that PMPSQ can selectively adsorb Hg(II) from binary ion systems in the presence of the coexistent ions Mn(II), Cu(II), Pb(II), Co(II), and Ni(II). Based on the results, it is concluded that PMPSQ had comparable high adsorption efficiency and could be potentially used for the removal of Hg(II) and Mn(II) from aqueous solution.
Authors:
; ; ; ; ; ; ; ; ;
Publication Date:
OSTI Identifier:
22345268
Resource Type:
Journal Article
Resource Relation:
Journal Name: Materials Research Bulletin; Journal Volume: 52; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; ADSORBENTS; ADSORPTION; ADSORPTION ISOTHERMS; AQUEOUS SOLUTIONS; DIFFUSION; EFFICIENCY; FILMS; ION EXCHANGE; IONS; KINETICS; SOL-GEL PROCESS; SURFACE PROPERTIES; THERMODYNAMIC PROPERTIES; THIOLS