skip to main content

SciTech ConnectSciTech Connect

Title: Tin oxide thick film by doping rare earth for detecting traces of CO{sub 2}: Operating in oxygen-free atmosphere

Highlights: • La, Gd, and Lu doped SnO{sub 2} with their sensing properties toward CO{sub 2} were compared. • The microstructures of SnO{sub 2}-based nanoparticles were elaborately characterized. • La-SnO{sub 2} thick film shows superior response toward trace ppm CO{sub 2}. • Our sensing material can be recommended to employ in oxygen-free environment. - Abstract: SnO{sub 2} thick films doped with atomic ratios ranging from 0 up to 8 at.% La, 8 at.% Gd, 8 at.% Lu were fabricated, respectively, via hydrothermal and impregnation methods. The crystal phase, morphology, and chemical composition of the SnO{sub 2}-based nanoparticles were characterized by XRD, FE-SEM, EDX, HRTEM and XPS. Sensing properties of La-SnO{sub 2}, Gd-SnO{sub 2}, Lu-SnO{sub 2} films, as well as the pure SnO{sub 2} film, were analyzed toward CO{sub 2} in the absence of O{sub 2}. It was found that the optimal doping element was La and the best doping ratio was 4 at.%. The maximum response appeared at an operating temperature of 250 °C, on which condition the 4 at.% La-SnO{sub 2} exhibited a remarkable improvement of response from 5.12 to 29.8 when increasing CO{sub 2} concentration from 50 to 500 ppm. Furthermore, the working mechanism underlying such enhancement inmore » CO{sub 2}-sensing functions by La additive in the absence of O{sub 2} was proposed and discussed.« less
Authors:
; ; ; ;
Publication Date:
OSTI Identifier:
22345257
Resource Type:
Journal Article
Resource Relation:
Journal Name: Materials Research Bulletin; Journal Volume: 52; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY; CARBON DIOXIDE; CHEMICAL COMPOSITION; CRYSTALS; DOPED MATERIALS; FILMS; MICROSTRUCTURE; NANOPARTICLES; NANOSTRUCTURES; OXYGEN; RARE EARTHS; SCANNING ELECTRON MICROSCOPY; SYNTHESIS; TIN OXIDES; TRANSMISSION ELECTRON MICROSCOPY; X-RAY DIFFRACTION; X-RAY PHOTOELECTRON SPECTROSCOPY