skip to main content

Title: Long-term optical observations of the Be/X-ray binary X Per

We present optical spectroscopic observations of X Per from 1999 to 2013 with the 2.16 m telescope at Xinglong Station and the 2.4 m telescope at Lijiang Station, National Astronomical Observatories of China. Combining these observations with the public optical photometric data, we find certain epochs of anti-correlations between the optical brightness and the intensity of the Hα and He I 6678 lines, which may be attributed to the mass ejections from the Be star; however, alternative explanations are also possible. The variability of the Fe II 6317 line in the spectra of X Per might also be caused by the shocked waves formed after the mass ejections from the Be star. The X-ray activities of the system might also be connected with the mass ejection events from the Be star. When the ejected materials were transported from the surface of the Be star to the orbit of the neutron star, an X-ray flare could be observed in its X-ray light curves. We use the neutron star as a probe to constrain the motion of the ejected material in the circumstellar disk. With the diffusion time of the ejected material from the surface of the Be star to the orbitmore » of neutron star, the viscosity parameter α of the circumstellar disk is estimated to be 0.39 and 0.28 for the different times, indicating that the disk around the Be star may be truncated by the neutron star at the 2:1 resonance radius and that a Type I X-ray outburst is unlikely to be observed in X Per.« less
Authors:
; ; ;  [1]
  1. Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)
Publication Date:
OSTI Identifier:
22345251
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astronomical Journal (New York, N.Y. Online); Journal Volume: 148; Journal Issue: 6; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; BRIGHTNESS; CORRELATIONS; DIFFUSION; EMISSION; MASS; NEUTRON STARS; ORBITS; RESONANCE; SHOCK WAVES; SPECTRA; SURFACES; TELESCOPES; VISCOSITY; VISIBLE RADIATION; X RADIATION