skip to main content

Title: Structural, thermal, optical properties and simulation of white light of titanium-tungstate-tellurite glasses doped with dysprosium

Graphical abstract: CIE coordinate diagram of different concentrations of the Dy{sup 3+}-doped TTWD glasses with coordinates in the white light region. - Highlights: • Radiative lifetime of {sup 4}F{sub 9/2} level of Dy{sup 3+} ions is longer in the tellurite glass. • Quantum efficiency is found to be high. • These glasses are suitable materials for generating white light. - Abstract: Structural, thermal, optical properties and simulation of white light of Dy{sup 3+}-doped tellurite glasses of composition TTWD: (75 − x)TeO{sub 2} − 10TiO{sub 2} − 15WO{sub 3} − xDy{sub 2}O{sub 3} (x = 0, 0.1, 0.5, 1.0 and 2.0 mol%) were investigated. Raman spectra revealed that the glass contains TeO{sub 4}, TeO{sub 3}, WO{sub 4} and WO{sub 6} units. Differential scanning calorimetry (DSC) measurements were carried out to measure the glass transition temperature of all the glasses. From the optical absorption spectra, luminescence spectra and using the Judd–Ofelt (JO) analysis, we estimated the radiative transition probabilities, emission cross-sections, branching ratios and radiative lifetimes. The decay curves at lower concentrations are exponential while they show a non-exponential behavior at higher concentrations (≥0.5 mol%) due to energy transfer processes. The effective lifetime for the {sup 4}F{sub 9/2} level decreases with increasemore » in Dy{sub 2}O{sub 3} concentration for the glasses under investigation. The non-exponential decay curves could fit well to the Inokuti–Hirayama (IH) model with S = 6, indicating that the nature of interaction responsible for energy transfer is of dipole–dipole type. Simulation of white light is examined with varying concentration and the results indicate that these glasses are suitable for white light emitting diode applications.« less
Authors:
 [1] ;  [2] ;  [1] ;  [1]
  1. School of Physics, University of Hyderabad, Hyderabad 500046 (India)
  2. Glass Science and Technology Section, Glass Division, CSIR-CGCRI, Kolkata 700032 (India)
Publication Date:
OSTI Identifier:
22345232
Resource Type:
Journal Article
Resource Relation:
Journal Name: Materials Research Bulletin; Journal Volume: 50; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; ABSORPTION SPECTRA; CALORIMETRY; DIPOLES; DOPED MATERIALS; DYSPROSIUM IONS; GLASS; INTERACTIONS; LIGHT EMITTING DIODES; LUMINESCENCE; OPTICAL PROPERTIES; QUANTUM EFFICIENCY; RAMAN SPECTRA; RAMAN SPECTROSCOPY; SIMULATION; TELLURIUM OXIDES; TRANSITION TEMPERATURE; TUNGSTATES