skip to main content

SciTech ConnectSciTech Connect

Title: Synthesis of luminescent nanocrystals and solid solutions in the YNbO{sub 4}–EuNbO{sub 4} system via hydrothermal route

Highlights: • Nanocrystals: YNbO{sub 4}:Eu{sup 3+} were directly formed under hydrothermal conditions at 240 °C. • The nanocrystals (10–20 nm) were luminescent and had ellipsoidal morphology. • The complete solid solutions in the YNbO{sub 4}–EuNbO{sub 4} system were also directly formed. • The PL intensity and R/O intensity ratio changed depending on heating temperature. - Abstract: Luminescent nanocrystals having distinctive ellipsoidal morphology and the complete solid solution of monoclinic phase in the YNbO{sub 4}–EuNbO{sub 4} system were hydrothermally formed under weakly basic conditions at 180–240 °C for 5 h. The excitation spectra of the Y{sub 1−x}Eu{sub x}NbO{sub 4} nanocrystals, which consisted of the charge transfer (CT) band around 240–270 nm due to [NbO{sub 4}]{sup 3−}–Eu{sup 3+} interaction and several sharp bands corresponding to the f–f transitions of Eu{sup 3+}, e.g. the most intense absorption band at 395 nm ({sup 7}F{sub 0}→{sup 5}L{sub 6}), showed that the compounds could be excited by both ultraviolet and visible light. A dominant red emission at 610 nm and a weak orange emission at 590 nm assigned to {sup 5}D{sub 0}→{sup 7}F{sub 2} and {sup 5}D{sub 0}→{sup 7}F{sub 1} transitions of Eu{sup 3+}, respectively were observed in the as-prepared nanocrystals containing europium under excitation atmore » 395 nm. The heat treatment at temperatures more than 1000 °C in air was effective for the improvement in the photoluminescence intensity of the as-prepared solid solutions. By the enhancement in the crystallinity and crystallite growth of the monoclinic phase through heat treatment at 1300 °C in air, the luminescence intensity of the as-prepared solid solution, Y{sub 0.75}Eu{sub 0.25}NbO{sub 4} (x = 0.25), which showed the most significant photoluminescence, became more than 5 times as strong as that before the heat treatment.« less
Authors:
;
Publication Date:
OSTI Identifier:
22345214
Resource Type:
Journal Article
Resource Relation:
Journal Name: Materials Research Bulletin; Journal Volume: 50; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; 77 NANOSCIENCE AND NANOTECHNOLOGY; ABSORPTION; EUROPIUM IONS; EXCITATION; HEAT TREATMENTS; INTERACTIONS; NANOSTRUCTURES; OPTICAL PROPERTIES; OXIDES; PHOTOLUMINESCENCE; SOLID SOLUTIONS; SPECTRA; SYNTHESIS; X-RAY DIFFRACTION