skip to main content

SciTech ConnectSciTech Connect

Title: Fast rise of 'Neptune-size' planets (4-8 R {sub ⊕}) from P ∼ 10 to ∼250 days—statistics of Kepler planet candidates up to ∼0.75 au

We infer the period (P) and size (R{sub p} ) distribution of Kepler transiting planet candidates with R{sub p} ≥ 1 R {sub ⊕} and P < 250 days hosted by solar-type stars. The planet detection efficiency is computed by using measured noise and the observed time spans of the light curves for ∼120,000 Kepler target stars. We focus on deriving the shape of planet periods and radius distribution functions. We find that for orbital periods P > 10 days, the planet frequency dN{sub p} /dlog P for 'Neptune-size' planets (R{sub p} = 4-8 R {sub ⊕}) increases with period as ∝P {sup 0.7±0.1}. In contrast, dN{sub p} /dlog P for 'super-Earth-size' (2-4 R {sub ⊕}) as well as 'Earth-size' (1-2 R {sub ⊕}) planets are consistent with a nearly flat distribution as a function of period (∝P {sup 0.11±0.05} and ∝P {sup –0.10±0.12}, respectively), and the normalizations are remarkably similar (within a factor of ∼1.5 at 50 days). Planet size distribution evolves with period, and generally the relative fractions for big planets (∼3-10 R {sub ⊕}) increase with period. The shape of the distribution function is not sensitive to changes in the selection criteria of the sample. The impliedmore » nearly flat or rising planet frequency at long periods appears to be in disagreement with the sharp decline at ∼100 days in planet frequency for low-mass planets (planet mass m{sub p} < 30 M {sub ⊕}) recently suggested by the HARPS survey. Within 250 days, the cumulative frequencies for Earth-size and super-Earth-size planets are remarkably similar (∼28% and 25%), while Neptune-size and Jupiter-size planets are ∼7% and ∼3%, respectively. A major potential uncertainty arises from the unphysical impact parameter distribution of the candidates.« less
Authors:
 [1] ;  [2]
  1. Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ 08540 (United States)
  2. Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)
Publication Date:
OSTI Identifier:
22342017
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 778; Journal Issue: 1; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; DETECTION; DISTRIBUTION; DISTRIBUTION FUNCTIONS; EFFICIENCY; IMPACT PARAMETER; INDIUM FLUORIDES; JUPITER PLANET; MASS; NEPTUNE PLANET; NOISE; RISE; STARS; STATISTICS; VISIBLE RADIATION