skip to main content

SciTech ConnectSciTech Connect

Title: Magnetic and gravitational disk-star interactions: an interdependence of PMS stellar rotation rates and spin-orbit misalignments

The presence of giant gaseous planets that reside in close proximity to their host stars, i.e., hot Jupiters, may be a consequence of large-scale radial migration through the protoplanetary nebulae. Within the framework of this picture, significant orbital obliquities characteristic of a substantial fraction of such planets can be attributed to external torques that perturb the natal disks out of alignment with the spin axes of their host stars. Therefore, the acquisition of orbital obliquity likely exhibits sensitive dependence on the physics of disk-star interactions. Here, we analyze the primordial excitation of spin-orbit misalignment of Sun-like stars in light of disk-star angular momentum transfer. We begin by calculating the stellar pre-main-sequence rotational evolution, accounting for spin-up due to gravitational contraction and accretion as well as spin-down due to magnetic star-disk coupling. We devote particular attention to angular momentum transfer by accretion, and show that while generally subdominant to gravitational contraction, this process is largely controlled by the morphology of the stellar magnetic field (that is, specific angular momentum accreted by stars with octupole-dominated surface fields is smaller than that accreted by dipole-dominated stars by an order of magnitude). Subsequently, we examine the secular spin-axis dynamics of disk-bearing stars, accounting formore » the time-evolution of stellar and disk properties, and demonstrate that misalignments are preferentially excited in systems where stellar rotation is not overwhelmingly rapid. Moreover, we show that the excitation of spin-orbit misalignment occurs impulsively through an encounter with a resonance between the stellar precession frequency and the disk-torquing frequency. Cumulatively, the model developed herein opens up a previously unexplored avenue toward understanding star-disk evolution and its consequences in a unified manner.« less
Authors:
 [1] ;  [2]
  1. Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States)
  2. Department of Physics, University of Michigan, Ann Arbor, MI 48109 (United States)
Publication Date:
OSTI Identifier:
22341899
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 778; Journal Issue: 2; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ACCRETION DISKS; ANGULAR MOMENTUM TRANSFER; CONTRACTION; DIPOLES; EXCITATION; INTERACTIONS; JUPITER PLANET; MAGNETIC FIELDS; MAGNETIC STARS; NEBULAE; PROTOPLANETS; ROTATION; SATELLITES; SPIN; SUN; SURFACES