skip to main content

SciTech ConnectSciTech Connect

Title: Photocatalytic hydrogen production using visible-light-responsive Ta{sub 3}N{sub 5} photocatalyst supported on monodisperse spherical SiO{sub 2} particulates

Graphical abstract: A simple and effective sol–gel process followed by nitridation in an NH{sub 3} flow has been developed to deposit Ta{sub 3}N{sub 5} semiconductor photocatalyst layers onto monodisperse spherical SiO{sub 2} particles. The obtained Ta{sub 3}N{sub 5}/SiO{sub 2} particles maintain an original spherical morphology of SiO{sub 2} and a sub-micrometer size with a narrow size distribution and without aggregation. The presence of SiO{sub 2} support shows at least no detrimental effects on photocatalytic activity, but tunes the secondary particle size to control dispersibility of the photocatalyst in the solution. - Highlights: • Fine nanoparticles of Ta{sub 3}N{sub 5} were immobilized on the surfaces of SiO{sub 2} giving SiO{sub 2}@Ta{sub 3}N{sub 5} core–shell spheres successfully produced H{sub 2} from methanol solution under visible light. • The presence of support (SiO{sub 2}) ensures the dispersion of the particulate in solution maintaining high photocatalytic activity of Ta{sub 3}N{sub 5}. • The obtained supported photocatalyst gives uniform size distribution and control the degree of dispersibility in the solution, which may control nature of light absorption and reflection of the photoreactor. - Abstract: Fine nanoparticles of Ta{sub 3}N{sub 5} (10–20 nm) were synthesized on the surfaces of SiO{sub 2} spheres with a diameter ofmore » ∼550 nm. A sol–gel method was used to modify the surface of SiO{sub 2} with Ta{sub 2}O{sub 5} from TaCl{sub 5} dissolved in ethanol in the presence of citric acid and polyethylene glycol. The resulting oxide composites were treated in an NH{sub 3} flow at 1123 K to form core–shell structured Ta{sub 3}N{sub 5}/SiO{sub 2} sub-microspheres. The obtained samples were characterized using powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectra (EDX), transmission electron microscopy (TEM), and photocatalytic activity measurements for H{sub 2} evolution from an aqueous methanol solution. The XRD results demonstrate the expected sequential formation of Ta{sub 2}O{sub 5} layers, followed by Ta{sub 3}N{sub 5} after nitridation on the Ta{sub 2}O{sub 5}/SiO{sub 2} composite. SEM and TEM observations indicate that the obtained Ta{sub 3}N{sub 5}/SiO{sub 2} sub-microspheres have a uniform size distribution with high crystallinity and an obvious core–shell structure. The presence of support maintained the intrinsic photocatalytic activity of Ta{sub 3}N{sub 5} nanoparticles, but it did drastically improve the dispersion of the photocatalysts in the solution. This study proposes the use of an inert support in photocatalytic reactors to improve ease of handling the powder photocatalyst for gas-phase photocatalysis and the suspension of the solution, controlling nature of light harvesting and degree of scattering of the photoreactor.« less
Authors:
 [1] ;  [2] ;  [3] ;  [4] ;  [1]
  1. Division of Physical Sciences and Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), 4700 KAUST, Thuwal 23955-6900 (Saudi Arabia)
  2. (China)
  3. Advanced Nanofabrication, Imaging and Characterization Core Lab, King Abdullah University of Science and Technology (KAUST), 4700 KAUST, Thuwal 23955-6900 (Saudi Arabia)
  4. Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)
Publication Date:
OSTI Identifier:
22341820
Resource Type:
Journal Article
Resource Relation:
Journal Name: Materials Research Bulletin; Journal Volume: 49; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; ABSORPTION; AMMONIA; FOURIER TRANSFORM SPECTROMETERS; FOURIER TRANSFORMATION; NANOPARTICLES; PARTICULATES; PHOTOCATALYSIS; POLYETHYLENE GLYCOLS; SCANNING ELECTRON MICROSCOPY; SILICA; SILICON OXIDES; SOL-GEL PROCESS; SOLUTIONS; SUSPENSIONS; TANTALUM NITRIDES; TANTALUM OXIDES; TRANSMISSION ELECTRON MICROSCOPY; X-RAY DIFFRACTION