skip to main content

Title: γ-Fe{sub 2}O{sub 3} nanoparticles: An easily recoverable effective photo-catalyst for the degradation of rose bengal and methylene blue dyes in the waste-water treatment plant

Graphical abstract: - Highlights: • γ-Fe{sub 2}O{sub 3} NPs from a single-source precursor and characterized by XRD, TEM, UV–vis spectra. • The NPs were tested as effective photocatalyst toward degradation of RB and MB dyes. • The possible pathway of the photocatalytic decomposition process has been discussed. • The active species, OH·, was detected by TA photoluminescence probing techniques. - Abstract: γ-Fe{sub 2}O{sub 3} nanoparticles (NPs) were synthesized from a single-source precursor complex [Fe{sub 3}O(C{sub 6}H{sub 5}COO){sub 6}(H{sub 2}O){sub 3}]NO{sub 3} by a simple thermal decomposition process and have been characterized by X-ray diffraction analysis (XRD), transmission electron microscopy (TEM) and UV–vis spectroscopic techniques. The NPs were highly pure and well crystallized having hexagonal morphology with an average particle size of 35 nm. The prepared γ-Fe{sub 2}O{sub 3} (maghemite) NPs show effective photo-catalytic activity toward the degradation of rose bengal (RB) and methylene blue (MB) dyes under visible light irradiation and can easily be recoverable in the presence of magnetic field for successive re-uses. The possible photo-catalytic decomposition mechanism is discussed through the detection of hydroxyl radical (OH·) by terephthalic acid photo-luminescence probing technique.
Authors:
; ;
Publication Date:
OSTI Identifier:
22341816
Resource Type:
Journal Article
Resource Relation:
Journal Name: Materials Research Bulletin; Journal Volume: 49; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY; CATALYSTS; DETECTION; FERRITES; IRON OXIDES; IRRADIATION; MAGNETIC FIELDS; METHYLENE BLUE; NANOPARTICLES; NANOSTRUCTURES; OPTICAL PROPERTIES; PARTICLE SIZE; PHOTOLUMINESCENCE; PYROLYSIS; THERMAL GRAVIMETRIC ANALYSIS; TRANSMISSION ELECTRON MICROSCOPY; X-RAY DIFFRACTION