skip to main content

SciTech ConnectSciTech Connect

Title: Synthesis, characterization and formation mechanism of metastable phase VO{sub 2}(A) nanorods

Graphical abstract: - Highlights: • Pure phases of VO{sub 2}(B) and VO{sub 2}(A) were prepared by a facile hydrothermal method. • Belt-like particles prepared at 180 °C was indexed as monoclinic VO{sub 2}(B) phase. • Rod-like particles prepared at 230 °C was indexed as tetragonal VO{sub 2}(A) phase. • VO{sub 2}(A) nanorods resulted from VO{sub 2}(B) nanobelts by assembly and crystal adjustment. - Abstract: Pure phase VO{sub 2}(A) nanorods were synthesized via the reduction of V{sub 2}O{sub 5} by oxalic acid during the hydrothermal treatment. Two sets of samples were prepared by varying both system temperature and reaction time under a filling ratio of 0.40 for observing the formation and evolution of VO{sub 2}(A) nanorods. Structures were characterized by X-ray diffraction, scanning and transmission electron microscopies, respectively. It was found that VO{sub 2}(B) was firstly formed and then transformed into VO{sub 2}(A) as the increasing system temperature or extending reaction time. An assembling and following crystal adjustment was proposed for explanation the formation process of VO{sub 2}(A) from VO{sub 2}(B). For VO{sub 2}(A) nanorods, the phase transition temperature of 169.7 °C was higher than that of the VO{sub 2}(A) bulk, it might be ascribed to the lower crystallinity or nonstoichiometrymore » in VO{sub 2}(A) nanorods. VO{sub 2} nanostructures with controllable phases and properties should find their promising applications in a single VO{sub 2} nanodevice.« less
Authors:
; ; ; ;  [1] ;  [1] ;  [2]
  1. School of Physics and Materials Science, Anhui University, Hefei 230039 (China)
  2. (China)
Publication Date:
OSTI Identifier:
22341782
Resource Type:
Journal Article
Resource Relation:
Journal Name: Materials Research Bulletin; Journal Volume: 48; Journal Issue: 9; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY; CRYSTALS; HYDROTHERMAL SYNTHESIS; MONOCLINIC LATTICES; NANOSTRUCTURES; OXALIC ACID; PHASE TRANSFORMATIONS; TRANSITION TEMPERATURE; TRANSMISSION ELECTRON MICROSCOPY; VANADIUM OXIDES; X-RAY DIFFRACTION