skip to main content

Title: Anisotropic thermal expansion and anharmonic phonon behavior of mullite-type Bi{sub 2}Ga{sub 4}O{sub 9}

Graphical abstract: - Highlights: • Anisotropic lattice thermal expansion of Bi{sub 2}Ga{sub 4}O{sub 9} was modeled using extended Grüneisen first-order approximation. • The model includes harmonic, quasi-harmonic and intrinsic anharmonic contributions to the internal energy. • Temperature dependent Raman frequency shift and line-width was analyzed using symmetric phonon decay channel. - Abstract: We report the lattice thermal expansion and the temperature-dependent phonon behavior of the mullite-type Bi{sub 2}Ga{sub 4}O{sub 9} complex oxide. The thermal expansion was studied using composite data collected from powder and single crystal X-ray diffraction between 100 K and 1273 K. The lattice expansion occurred in the order of a < c < b. The anisotropic expansion behavior was monitored with respect to thermal expansion coefficients and the anisotropy factor. The volume thermal expansion was expressed using an extended Grüneisen first-order approximation to the zero-pressure equation of state; the model includes harmonic, quasi-harmonic and intrinsic anharmonic contributions to the internal energy as a function of temperature. The temperature dependent Raman spectra were collected from a single crystal between 78 K and 1273 K. The shift of the frequencies and the broadening of the line-widths with increasing temperature helped to analyze the anharmonicity and the thermal behavior ofmore » some phonons.« less
Authors:
;
Publication Date:
OSTI Identifier:
22341772
Resource Type:
Journal Article
Resource Relation:
Journal Name: Materials Research Bulletin; Journal Volume: 48; Journal Issue: 9; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; ANISOTROPY; CRYSTAL STRUCTURE; EQUATIONS OF STATE; MONOCRYSTALS; MULLITE; OXIDES; PHONONS; RAMAN SPECTRA; RAMAN SPECTROSCOPY; TEMPERATURE DEPENDENCE; THERMAL EXPANSION; X-RAY DIFFRACTION