skip to main content

SciTech ConnectSciTech Connect

Title: Effect of the overlapping factor on the microstructure and mechanical properties of pulsed Nd:YAG laser welded Ti6Al4V sheets

The effect of the overlapping factor on the microstructures and mechanical properties of pulsed Nd:YAG laser welded Ti6Al4V alloy sheets was investigated by microstructural observations, microhardness tests, tensile tests and fatigue tests. A microstructural examination shows that by increasing the overlapping factor, the grains in the fusion zone become coarser, and the width of the heat affected zone increases. As overlapping factor increases, the width of region composed completely of martensite α′ and the secondary α phase in the heat affected zone increases, consequently the gradient of microstructure along the direction from the fusion zone to base metal decreases, so does the gradient of microhardness. The results of tensile and fatigue tests reveal that the joints made using medium overlapping factor exhibit better mechanical properties than those welded with low and high overlapping factors. Based on the experimental results, it can be stated that a sound weld of Ti6Al4V alloy can be obtained if an appropriate overlapping factor is used. - Highlights: • The weld quality of Ti6Al4V alloy under various overlapping factors was assessed. • Tensile and fatigue tests were conducted with as-welded specimen. • Localized strain across the weld was measured using DIC photogrammetry system. • A soundmore » weld of Ti6Al4V alloy is obtained by using right overlapping factor.« less
Authors:
; ; ;
Publication Date:
OSTI Identifier:
22340388
Resource Type:
Journal Article
Resource Relation:
Journal Name: Materials Characterization; Journal Volume: 93; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; AUGMENTATION; FATIGUE; HEAT AFFECTED ZONE; MARTENSITE; MICROHARDNESS; MICROSTRUCTURE; NEODYMIUM LASERS; PULSES; STRAINS; TENSILE PROPERTIES; TITANIUM ALLOYS