skip to main content

Title: Effect of substrates on microstructure and mechanical properties of nano-eutectic 1080 steel produced by aluminothermic reaction

Nano-eutectic bulk 1080 carbon steel was prepared on glass and copper substrates by an aluminothermic reaction casting. The microstructure of the steel was analyzed by an optical microscope, transmission electron microscopy, an electron probe micro-analyzer, a scanning electron microscope and X-ray diffraction. Results show that the microstructure of the steel consisted of a little cementite and lamellar eutectic pearlite. Average lamellar spacing of the pearlite prepared on copper and glass substrates was about 230 nm and 219 nm, respectively. Volume fraction of the pearlite of the two steels was about 95%. Hardness of the steel was about 229 and 270 HV. Tensile strength was about 610 and 641 MPa and tensile elongation was about 15% and 8%. Compressive strength was about 1043 and 1144 MPa. Compared with the steel prepared on copper substrate, the steel prepared on glass substrate had smaller lamellar spacing of the pearlite phase and higher strength, and low ductility due to the smaller spacing. - Highlights: • 1080-carbon steels were successfully prepared by an aluminothermic reaction casting. • Lamellar spacing of the nanoeutetic pearlite is less than 250 nm. • The compressive strength of the steel is about 1144 MPa. • The tensile ductility of themore » steel is about 15%.« less
Authors:
; ; ; ; ; ;
Publication Date:
OSTI Identifier:
22340368
Resource Type:
Journal Article
Resource Relation:
Journal Name: Materials Characterization; Journal Volume: 92; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; CARBON STEELS; CEMENTITE; COMPRESSION STRENGTH; COPPER; DUCTILITY; EUTECTICS; GLASS; MICROSTRUCTURE; OPTICAL MICROSCOPES; PEARLITE; SCANNING ELECTRON MICROSCOPY; SUBSTRATES; TRANSMISSION ELECTRON MICROSCOPY; X-RAY DIFFRACTION