skip to main content

SciTech ConnectSciTech Connect

Title: A stellar census of the Tucana-Horologium moving group

We report the selection and spectroscopic confirmation of 129 new late-type (SpT = K3-M6) members of the Tucana-Horologium moving group, a nearby (d ∼ 40 pc), young (τ ∼ 40 Myr) population of comoving stars. We also report observations for 13 of the 17 known Tuc-Hor members in this spectral type range, and that 62 additional candidates are likely to be unassociated field stars; the confirmation frequency for new candidates is therefore 129/191 = 67%. We have used radial velocities, Hα emission, and Li{sub 6708} absorption to distinguish between contaminants and bona fide members. Our expanded census of Tuc-Hor increases the known population by a factor of ∼3 in total and by a factor of ∼8 for members with SpT ≥ K3, but even so, the K-M dwarf population of Tuc-Hor is still markedly incomplete. Our expanded census allows for a much more detailed study of Tuc-Hor than was previously feasible. The spatial distribution of members appears to trace a two-dimensional sheet, with a broad distribution in X and Y, but a very narrow distribution (±5 pc) in Z. The corresponding velocity distribution is very small, with a scatter of ±1.1 km s{sup –1} about the mean UVW velocity formore » stars spanning the entire 50 pc extent of Tuc-Hor. We also show that the isochronal age (τ ∼ 20-30 Myr) and the lithium depletion boundary age (τ ∼ 40 Myr) disagree, following the trend in other pre-main-sequence populations for isochrones to yield systematically younger ages. The Hα emission line strength follows a trend of increasing equivalent width with later spectral type, as is seen for young clusters. We find that moving group members have been depleted of measurable lithium for spectral types of K7.0-M4.5. None of our targets have significant infrared excesses in the WISE W3 band, yielding an upper limit on warm debris disks of F < 0.7%. Finally, our purely kinematic and color-magnitude selection procedure allows us to test the efficiency and completeness for activity-based selection of young stars. We find that 60% of K-M dwarfs in Tuc-Hor do not have ROSAT counterparts and would have been omitted in X-ray-selected samples. In contrast, GALEX UV-selected samples using a previously suggested criterion for youth achieve completeness of 77% and purity of 78%, and we suggest new SpT-dependent selection criteria that will yield >95% completeness for τ ∼ 40 Myr populations with GALEX data available.« less
Authors:
 [1] ;  [2] ;  [3] ;  [4]
  1. Department of Astronomy, The University of Texas at Austin, Austin, TX 78712 (United States)
  2. Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States)
  3. Department of Physics and Astronomy, Bucknell University, Lewisburg, PA 17837 (United States)
  4. Institute for Astronomy, University of Hawaii at Manoa, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)
Publication Date:
OSTI Identifier:
22340225
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astronomical Journal (New York, N.Y. Online); Journal Volume: 147; Journal Issue: 6; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ABSORPTION; COLOR; EFFICIENCY; EMISSION; IMPURITIES; LITHIUM; MASS; RADIAL VELOCITY; SPATIAL DISTRIBUTION; STARS; TWO-DIMENSIONAL CALCULATIONS; X RADIATION