skip to main content

Title: HELIOSPHERIC PROPAGATION OF CORONAL MASS EJECTIONS: COMPARISON OF NUMERICAL WSA-ENLIL+CONE MODEL AND ANALYTICAL DRAG-BASED MODEL

Real-time forecasting of the arrival of coronal mass ejections (CMEs) at Earth, based on remote solar observations, is one of the central issues of space-weather research. In this paper, we compare arrival-time predictions calculated applying the numerical ''WSA-ENLIL+Cone model'' and the analytical ''drag-based model'' (DBM). Both models use coronagraphic observations of CMEs as input data, thus providing an early space-weather forecast two to four days before the arrival of the disturbance at the Earth, depending on the CME speed. It is shown that both methods give very similar results if the drag parameter Γ = 0.1 is used in DBM in combination with a background solar-wind speed of w = 400 km s{sup –1}. For this combination, the mean value of the difference between arrival times calculated by ENLIL and DBM is Δ-bar =0.09±9.0 hr with an average of the absolute-value differences of |Δ|-bar =7.1 hr. Comparing the observed arrivals (O) with the calculated ones (C) for ENLIL gives O – C = –0.3 ± 16.9 hr and, analogously, O – C = +1.1 ± 19.1 hr for DBM. Applying Γ = 0.2 with w = 450 km s{sup –1} in DBM, one finds O – C = –1.7 ±more » 18.3 hr, with an average of the absolute-value differences of 14.8 hr, which is similar to that for ENLIL, 14.1 hr. Finally, we demonstrate that the prediction accuracy significantly degrades with increasing solar activity.« less
Authors:
; ;  [1] ; ; ;  [2] ; ;  [3] ;  [4]
  1. Hvar Observatory, Faculty of Geodesy, University of Zagreb, Kačćeva 26, HR-10000 Zagreb (Croatia)
  2. Kanzelhöhe Observatory—IGAM, Institute of Physics, University of Graz, Universittsplatz 5, A-8010 Graz (Austria)
  3. NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)
  4. George Mason University, Fairfax, VA 22030 (United States)
Publication Date:
OSTI Identifier:
22340192
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal, Supplement Series; Journal Volume: 213; Journal Issue: 2; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ACCURACY; COMPARATIVE EVALUATIONS; DISTURBANCES; DRAG; EARTH PLANET; MAGNETOHYDRODYNAMICS; MASS; SOLAR CORONA; SOLAR WIND; SUN; WEATHER