skip to main content

Title: SU-E-T-63: Carotid Sparing Tomohelical Three Dimensional Conformal Radiotherapy for T1N0 Glottic Cancer

Purpose: We investigated the dosimetric benefit and treatment efficiency of carotid-sparing TomoHelical (TH) three-dimensional conformal radiotherapy (3DCRT) for early glottic cancer. Methods: Computed tomography (CT) simulation was performed for 10 patients with early-stage (T1N0M0) glottic squamous cell carcinoma. The clinical target volume, planning target volume (PTV), carotid artery (CA), and spinal cord (SP) were delineated for each CT data set. Two-field 3DCRT (2F-3DCRT), three-field intensity-modulated radiation therapy (IMRT) (3F-IMRT), TomoHelical-IMRT (TH-IMRT), and TH-3DCRT plans were generated, with a total prescribed dose of 67.5 Gy in 30 fractions to the PTV for each patient. In order to evaluate plan quality, dosimetric characteristics were compared in terms of the conformity index (CI) and homogeneity index (HI) for the PTV, V35, V50, and V63 for the CAs and in terms of the maximum dose for the SP. Additionally, treatment planning and delivery times were compared to evaluate treatment efficiency. Results: The CIs for 3F-IMRT (0.650±0.05), TH-IMRT (0.643±0.03), and TH-3DCRT (0.631±0.03) were much better than that for 2F-3DCRT (0.318±0.03). The HIs for TH-IMRT (1.053±0.01) and TH-3DCRT (1.055±0.01) were slightly better than those for 2F-3DCRT (1.062±0.01) and 3F-IMRT (1.091±0.007). 2F-3DCRT showed poor CA sparing in terms of the V35, V50, and V63 compared to 3F-IMRT,more » TH-IMRT, and TH-3DCRT (p<0.05), whereas there was no significant dose difference between 3F-IMRT, TH-IMRT, and TH-3DCRT (p>0.05). The maximum dose to the SP with all plans was below 45 Gy. The treatment planning times for 2F-3DCRT (5.9±0.66 min) and TH-3DCRT (7.32±0.94 min) were much lower than those for 3F-IMRT (45.51±2.76 min) and TH-IMRT (35.58±4.41 min), whereas the delivery times with all plans was below 3 minutes. Conclusion: TH-3DCRT showed excellent carotid sparing capability, comparable to that with TH-IMRT, with high treatment efficiency and short planning and treatment times, comparable to those for 2F-3DCRT, while maintaining good PTV coverage. This work was supported by the Technology Innovation Program, 10040362, Development of an integrated management solution for radiation therapy funded by the Ministry of Knowledge Economy (MKE, Korea)« less
Authors:
; ; ; ; ; ; ; ;  [1]
  1. Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)
Publication Date:
OSTI Identifier:
22339830
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 41; Journal Issue: 6; Other Information: (c) 2014 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; CARCINOMAS; CAROTID ARTERIES; COMPUTERIZED TOMOGRAPHY; PATIENTS; PLANNING; RADIATION DOSES; RADIOTHERAPY; SPINAL CORD