skip to main content

SciTech ConnectSciTech Connect

Title: SU-E-T-30: Absorbed Doses Determined by Texture Analysis of Gafchromic EBT3 Films Using Scanning Electron Microscopy: A Feasibility Study

Purpose: The texture analysis method is useful to estimate structural features of images as color, size, and shape. The study aims to determine a dose-response curve by texture analysis of Gafchromic EBT3 film images using scanning electron microscopy (SEM). Methods: The uncoated Gafchromic EBT3 films were prepared to directly scan over the active surface layer of EBT3 film using SEM. The EBT3 films were exposed at a dose range of 0 to 10 Gy using a 6 MV photon beam. The exposed film samples were SEM-scanned at 100X, 1000X, and 3000X magnifications. The four texture features (Homogeneity, Correlation, Contrast, and Energy) were calculated based on the gray level co-occurrence matrix (GLCM) derived from the SEM images at each dose. To validate a correlation between delivered doses and texture features, an R-squared value in linear regression was tested. Results: The results showed that the Correlation index was more suitable as dose indices than the other three texture features due to higher linearity and sensitivity of the dose response curves. Further the Correlation index of 3000X magnified SEM images with 9 pixel offsets had an R-squared value of 0.964. The differences between the delivered doses and the doses measured by this methodmore » were 0.9, 1.2, 0.2, and 0.2 Gy at 5, 10, 15, and 20 Gy, respectively. Conclusion: It seems to be feasible to convert micro-scale structural features of {sub χ}t{sub χχχ}he EBT3 films to absorbed doses using the texture analysis method.« less
Authors:
 [1] ;  [2] ;  [1] ;  [1] ;  [2] ;  [2]
  1. Interdisciplinary Program in Radiation Applied Life Science, Seoul National University College of Medicine, Seoul (Korea, Republic of)
  2. (Korea, Republic of)
Publication Date:
OSTI Identifier:
22339807
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 41; Journal Issue: 6; Other Information: (c) 2014 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; ABSORBED RADIATION DOSES; FEASIBILITY STUDIES; IMAGES; PHOTON BEAMS; SCANNING ELECTRON MICROSCOPY