skip to main content

Title: Influence of oxide impurities on the chemical tuning of the thermoelectric properties of substitution derivatives of RuIn{sub 3}

A systematic investigation on tuning the charge carrier concentration by substitution of the Ru position in RuIn{sub 3} is performed. Samples with nominal composition Ru{sub 0.95}T{sub 0.05}In{sub 3} (T=Re, Rh, Ir) were synthesized via liquid–solid-reaction and subsequent spark plasma sintering treatment. The chemical composition was characterized by X-ray, metallographic and microstructure analysis revealing solid solutions in the samples with Rh and Ir, whereas Re cannot be incorporated in RuIn{sub 3}. Minor oxide impurities in the commercially available starting elements, the homogeneity range of RuIn{sub 3} and the redox potentials of the participating elements are the key for interpreting the observed lattice parameters and the corresponding composition. Both, substitutions with Rh or Ir and Re inclusions in RuIn{sub 3} lead independently to a significant decrease of the total thermal conductivity down to approximately one half of the value observed for binary RuIn{sub 3}, prepared with commercially available starting materials. The electrical resistivity was reduced by substitution and the temperature dependence changes from semiconductor-like, for RuIn{sub 3}, to metal-like in the substitution derivatives. At the same time the sign change in the thermopower at high temperatures, characteristic for binary RuIn{sub 3}, is suppressed, attaining only electrons as majority carriers. - Graphical abstract:more » Microstructure (perpendicular to the pressure axis; polarized light) of polycrystalline Ru{sub 0.95}Rh{sub 0.05}In{sub 3} (a), Ru{sub 0.95}Ir{sub 0.05}In{sub 3} (b) and Ru{sub 0.95}Re{sub 0.05}In{sub 3} (c) samples after SPS treatment. - Highlights: • Substitution solid solutions of RuIn{sub 3} were prepared via liquid–solid-reaction. • Chemistry of oxide impurities is crucial for explanation of experimental results. • Thermodynamic calculations support the observation of In{sub 2}O{sub 3} or ZnO as impurities. • Electrical resistivity is reduced by substitution. • Temperature dependence of resistivity changes from semiconductor- to metal-like.« less
Authors:
; ; ;
Publication Date:
OSTI Identifier:
22334291
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Solid State Chemistry; Journal Volume: 215; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; CHEMICAL COMPOSITION; ELECTRIC CONDUCTIVITY; IMPURITIES; INDIUM OXIDES; LATTICE PARAMETERS; LIQUIDS; MICROSTRUCTURE; POLYCRYSTALS; SOLID SOLUTIONS; SOLIDS; TEMPERATURE DEPENDENCE; THERMAL CONDUCTIVITY; THERMOELECTRIC PROPERTIES; X RADIATION; ZINC OXIDES