skip to main content

Title: Enhanced magnetic behaviors of CoPt nanoparticles by addition of SiO{sub 2}

Equiatomic L1{sub 0} CoPt alloy nanoparticles (NPs) with various contents of SiO{sub 2} are synthesized by the simple sol–gel method. The SiO{sub 2} additions restrain the growth of grain and hinder the agglomeration formation. The coercivity increases first and then decreases with SiO{sub 2} addition. Compared to the 0 μl-SiO{sub 2} CoPt NPs, the higher ordering degree and better magnetic properties are obtained by the addition of amount 10 μl SiO{sub 2} in our sample. And the coercivity is two times as large as that of 0 μl-SiO{sub 2} NPs. When the addition of SiO{sub 2} is more than 10 μl, the deteriorated magnetic properties are ascribed to the transformation from hard magnetically phase to soft magnetically phase due to the decrease of particle size. - Graphical abstract: L1{sub 0} CoPt alloy nanoparticles with various contents of SiO{sub 2} are synthesized by sol–gel method. The effects of SiO{sub 2} on the structure and magnetic properties of CoPt nanoparticles are investigated. - Highlights: • The L1{sub 0} CoPt–SiO{sub 2} nanoparticles (NPs) were synthesized by sol–gel method. • Effects of SiO{sub 2} content on the structure and magnetic properties were investigated. • The addition of SiO{sub 2} restrained the growth of particlemore » size. • CoPt–10 μl SiO{sub 2} NPs showed a higher ordering degree and better magnetic properties.« less
Authors:
; ; ;  [1] ;  [2] ;  [1] ;  [2] ;  [1] ;  [2]
  1. Institute of Condensed State Physics, Jilin Normal University, Siping 136000 (China)
  2. (China)
Publication Date:
OSTI Identifier:
22334222
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Solid State Chemistry; Journal Volume: 213; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; 77 NANOSCIENCE AND NANOTECHNOLOGY; AGGLOMERATION; ALLOYS; COERCIVE FORCE; MAGNETIC PROPERTIES; NANOPARTICLES; PARTICLE SIZE; SILICA; SILICON OXIDES; SOL-GEL PROCESS