skip to main content

SciTech ConnectSciTech Connect

Title: Fe{sub 3}O{sub 4}–CNTs nanocomposites: Inorganic dispersant assisted hydrothermal synthesis and application in lithium ion batteries

Fe{sub 3}O{sub 4}–CNTs nanocomposites with a particle size of ∼80 nm have been synthesized through an organic-free hydrothermal synthesis strategy by using Sn(OH){sub 6}{sup 2−} as an inorganic dispersant, and served as anode materials of lithium ion batteries. Nano-sized and micro-sized Fe{sub 3}O{sub 4} without CNTs have also been prepared for comparison. The cycle performances of the as-obtained Fe{sub 3}O{sub 4} are highly size-dependent. The Fe{sub 3}O{sub 4}–CNTs nanocomposites can deliver reversible discharge capacity of ∼700 mA h/g at a current density of 50 mA/g after 50 cycles. The discharge capacity of the micro-sized Fe{sub 3}O{sub 4} decreased to 171 mA h/g after 50 cycles. Our work not only provides new insights into the inorganic dispersant assisted hydrothermal synthesis of metal oxides nanocrystals but also gives guidance for finding new nanocomposites as anode materials of lithium ion batteries. - Graphical abstract: Fe{sub 3}O{sub 4}–CNTs nanocomposites have been prepared through an inorganic dispersant assisted hydrothermal synthesis strategy, and served as anode materials of lithium ion batteries with enhanced performance. - Highlights: • Sn(OH){sub 6}{sup 2−} is a good inorganic dispersant for the hydrothermal synthesis of nano Fe{sub 3}O{sub 4}. • The cycle performances of nano Fe{sub 3}O{sub 4} anode are muchmore » better than that of micro Fe{sub 3}O{sub 4} anode. • Compositing CNTs can enhance the cycle performances of nano Fe{sub 3}O{sub 4} anode.« less
Authors:
; ; ; ; ; ; ;
Publication Date:
OSTI Identifier:
22334207
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Solid State Chemistry; Journal Volume: 213; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; 77 NANOSCIENCE AND NANOTECHNOLOGY; ANODES; FERRITES; HYDROTHERMAL SYNTHESIS; IRON OXIDES; LITHIUM ION BATTERIES; LITHIUM IONS; NANOCOMPOSITES; NANOSTRUCTURES; PARTICLE SIZE